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Modeling the Motion of an Ideal Elastic String

Idealizing Assumptions:

The only force acting on the string is (constant) tension, i.e.
no friction, resistance to bending, etc.

The string’s motion takes place in a single plane.

The displacement of the string from equilibrium is small
relative to its length, i.e. only small deflections and no
stretching.

Set-up: Place the string in the xy -plane, along the x-axis at rest,
and let

u(x , t) =

{
displacement of string from rest
at position x and time t.
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We furthermore set

τ =

{

(constant) magnitude of tension

throughout string (units = force),

ρ =

{

(constant) linear mass density

throughout string (units = mass/length).
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Tensions on small
string segment

By Newton’s Second Law

−τ sinα+ τ sinβ
︸ ︷︷ ︸

vertical components of tension

≈
mass of segment

︷ ︸︸ ︷

ρ∆x utt(x , t).
︸ ︷︷ ︸

vertical acceleration

Since α is small

sinα ≈ sinα

cosα
= tanα = slope at A = ux(x , t).

Likewise sinβ ≈ slope at B = ux(x +∆x , t).
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Plugging this into the Second Law expression gives

τ

(
ux(x +∆x , t)− ux(x , t)

∆x

)

≈ ρ utt(x , t).

Letting ∆x → 0 we obtain the exact expression

τuxx = ρ utt .

Finally, setting c2 = τ/ρ, we obtain the one-dimensional wave
equation

∂2u

∂t2
= c2

∂2u

∂x2
.
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Remarks.

The units of c2 are

force

mass/length
=

mass · length/time2

mass/length
=

(
length

time

)2

,

so that c has the units of speed.

Modified assumptions yield modified PDEs, e.g.

∂2u

∂t2
= c2

∂2u

∂x2
+

F (x , t)

ρ
[F (x , t) = external force/length]

∂2u

∂t2
= c2

∂2u

∂x2
− 2k

∂u

∂t
[Fluid resistance ∝ velocity]
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Solving the (unrestricted) 1-D wave equation

If we impose no additional restrictions, we can derive the general
solution to the 1-D wave equation.

We perform the linear change of variables

α = ax + bt,

β = mx + nt,

(an − bm 6= 0).

The chain rule (applied twice) gives

utt = b2uαα + 2bnuαβ + n2uββ,

uxx = a2uαα + 2amuαβ +m2uββ .
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The wave equation utt − c2uxx = 0 then becomes

(b2 − a2c2)uαα + 2(bn − amc2)uαβ + (n2 − c2m2)uββ = 0.

Choosing a = m = 1, b = c and n = −c results in

−4c2uαβ = 0 ⇐⇒ ∂2u

∂α∂β
= 0.

Now integrate with respect to β, then α:

∂u

∂α
=

∫
∂2u

∂α∂β
dβ =

∫

0 dβ =

“constant” of integration
︷ ︸︸ ︷

f (α),

u =

∫
∂u

∂α
dα =

∫

f (α) dα = F (α)
︸ ︷︷ ︸

antideriv. of f

+ G (β).
︸ ︷︷ ︸

“constant” of integration
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Back substitution then gives:

Theorem

The general solution to the 1-D wave equation is

u(x , t) = F (x + ct) + G (x − ct),

where F and G are arbitrary (twice-differentiable) functions of one
variable.

Remarks:

The solution consists of the superposition of two traveling
waves with speed c , but moving in opposite directions.

The functions F and G (and hence the solution u) are
completely determined by initial data of the form

u(x , 0) = f (x) [the initial shape of the string],

ut(x , 0) = g(x) [the initial velocity of the string].
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Example

Find the solution of the 1-D wave equation that satisfies

u(x , 0) = e−x2 , ut(x , 0) = 0.

We must solve for F , G in the general solution

u(x , t) = F (x + ct) + G (x − ct).

Since
ut(x , t) = cF ′(x + ct)− cG ′(x − ct),

from the initial conditions we obtain

F (x) + G (x) = u(x , 0) = e−x2 ,

cF ′(x)− cG ′(x) = ut(x , 0) = 0.
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The second equation implies that

F ′(x) = G ′(x) =⇒ F (x) = G (x) + K .

Substituting this into the first equation we find

2G (x) + K = e−x2 =⇒ G (x) =
1

2
e−x2 − K

2

=⇒ F (x) =
1

2
e−x

2
+

K

2
.

Therefore the solution is

u(x , t) = F (x + ct) + G (x − ct)

=

(
1

2
e−(x+ct)2 +

K

2

)

+

(
1

2
e−(x−ct)2 − K

2

)

=
1

2

(

e−(x+ct)2 + e−(x−ct)2
)

.
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The solution surface and its domain

uu

tt

xx

Daileda Wave Equation



Derivation Unrestricted Solution Boundary Value Problems Superposition

Remarks: The domain of u(x , t) is

H = R× [0,∞).

1. Spatiotemporally this means:

∗ The string is infinitely long.

∗ We only let time move forward from t = 0.

2. The function u(x , t) satisfies:

∗ utt = c2uxx on the interior of H ;

∗ u = f , ut = g on the boundary of H .

}
Boundary Value
Problem (BVP)
on H.
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Two more physical constraints

We now assume that:

The string has finite length L.

The string is fixed at both ends.

These constraints yield the modified BVP

∂2u

∂t2
= c2

∂2u

∂x2
,

u(0, t) = u(L, t) = 0,

u(x , 0) = f (x),

ut(x , 0) = g(x),

with domain S = [0, L] × [0,∞).
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Solving the fixed endpoint string problem

Since we do not have initial data along the entire x-axis, we
cannot simply appeal to the previous solution.1

It’s relatively easy to find solutions to the 1-D wave equation that
satisfy u(0, t) = u(L, t) = 0, e.g.

u(x , t) = sin
(πx

L

)

cos
(cπt

L

)

,

u(x , t) =
L

cπ
sin

(πx

L

)

sin
(cπt

L

)

.

But these come with their own prescribed initial behavior, and we
want to be able to choose u(x , 0) and ut(x , 0) arbitrarily.

1We’ll see later that there’s actually a clever way around this issue.
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What now?

We will use the following fact to build solutions with desired initial
behavior from simple solutions like those above.

Theorem (The Principle of Superposition)

If u1, u2 are solutions of the 1-D wave equation, then so is
u = c1u1 + c2u2 for any choice of constants c1 and c2. If, in
addition, u1 = u2 = 0 on the vertical edges of S, then u = 0 on
the vertical edges as well.

That is, if u1(x , t) and u2(x , t) describe the motion of a vibrating
string of length L with fixed end points, then so does any linear
combination of them.
Remarks:

Note that initial behavior is not addressed.

This generalizes to any homogeneous linear PDE.
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Proof of the principle of superposition

If u1, u2 both solve the 1-D wave equation and c1, c2 are
constants, then

(c1u1 + c2u2)tt = c1(u1)tt + c2(u2)tt

= c1c
2(u1)xx + c2c

2(u2)xx

= c2(c1u1 + c2u2)xx ,

so that u = c1u1 + c2u2 is also a solution.

Furthermore, if u1 = u2 = 0 on the vertical edges of S , then
certainly u = c1u1 + c2u2 = 0 there as well. QED.

Remark: The Principle of Superposition is easily seen to hold for
linear combinations of any number of solutions.
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Example

We saw above that

u1(x , t) = sin
(πx

L

)

cos
(cπt

L

)

,

u2(x , t) =
L

cπ
sin

(πx

L

)

sin
(cπt

L

)

both solve the fixed endpoint length L vibrating string problem.

By the Principle of Superposition, so do

u = 2u1 − u2 = sin
(πx

L

)(

2 cos
(cπt

L

)

− L

cπ
sin

(cπt

L

))

,

u = −
√
2u2 + πu2 = sin

(πx

L

)(

−
√
2 cos

(cπt

L

)

+
L

c
sin

(cπt

L

))

.

Daileda Wave Equation



Derivation Unrestricted Solution Boundary Value Problems Superposition

Example

More generally, for n = 1, 2, 3, . . . the functions

un(x , t) = sin
(nπct

L

)

sin
(nπx

L

)

,

vn(x , t) = cos
(nπct

L

)

sin
(nπx

L

)

,

solve the fixed endpoint length L vibrating string problem.

By the Principle of Superposition, so does the function

u(x , t) =
∞∑

n=1

an sin
(nπct

L

)

sin
(nπx

L

)

+ bn cos
(nπct

L

)

sin
(nπx

L

)

=

∞∑

n=1

(

an sin
(nπct

L

)

+ bn cos
(nπct

L

))

sin
(nπx

L

)

.
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These series solutions satisfy the initial conditions

u(x , 0) =

∞∑

n=1

bn sin
(nπx

L

)

[= f (x)?],

ut(x , 0) =

∞∑

n=1

an
nπc

L
sin

(nπx

L

)

[= g(x)?].

So, one can solve the vibrating string problem with initial
conditions

u(x , 0) = f (x), ut(x , 0) = g(x), 0 ≤ x ≤ L,

provided that f (x) and g(x) can be expressed as (possibly infinite)

linear combinations of the functions sin
(nπx

L

)

, n = 1, 2, 3, . . .

These are examples of Fourier series.
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Questions to be addressed

In terms of solving the finite vibrating string problem, we are now
faced with:

Which functions are expressible as Fourier series?

How can we find the Fourier series expansion of a given
function?

Once we’ve pinned these down, we’ll return to ask:

Where did the “simple” solutions come from, and are there
others?

How are “simple” solutions found for other linear PDEs, and
how do Fourier series generalize to these?

This is what we’ll spend most of the rest of the semester thinking
about!
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