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Transforming Fourier Series Half-range Expansions

New Fourier series from old

Recall: Given a function f (x), we can dilate/translate its graph
via multiplication/addition, as follows.

Geometric operation Mathematical implementation

Dilate along the x-axis
by a factor of a

f (x/a)

Dilate along the y -axis
by a factor of b

bf (x)

Translate (right) along
the x-axis by c units

f (x − c)

Translate (up) along the
y -axis by d units

f (x) + d
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Transforming Fourier Series Half-range Expansions

One has the following general principles.

Theorem

If the graph of f (x) is obtained from g(x) by dilations and/or
translations, then the same operations can be used to obtain the
Fourier series of f from that of g .

Theorem

If f (x) is a linear combination of g1(x), g2(x), . . . , gn(x), then the
Fourier series of f is the same linear combination of the Fourier
series of g1, g2, . . . , gn.

Remarks:

These are both easily derived from Euler’s formulas for the
Fourier coefficients.

These tell us that we can construct Fourier series of “new”
functions from existing series.
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Transforming Fourier Series Half-range Expansions

Example

Use an existing series to find the Fourier series of the 2π-periodic
function given by f (x) = x for 0 ≤ x < 2π.

The graph of f (x):

This function can be obtained from the earlier sawtooth wave

by translating both up and to the right by π units.
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Transforming Fourier Series Half-range Expansions

The old sawtooth wave has Fourier series

2
∞∑
n=1

(−1)n+1 sin(nx)

n
,

so the function f has Fourier series

π + 2
∞∑
n=1

(−1)n+1 sin(n(x − π))

n

= π + 2
∞∑
n=1

(−1)n+1

n
(sin(nx) cos(nπ) − sin(nπ) cos(nx))

= π + 2
∞∑
n=1

(−1)n+1(−1)n

n
sin(nx)

= π − 2
∞∑
n=1

sin(nx)

n
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Transforming Fourier Series Half-range Expansions

Example

Use an existing series to find the Fourier series of the 4-periodic
function satisfying

f (x) =

{
−x if − 1 ≤ x < 1

x − 2 if 1 ≤ x < 3
.

The graph of f (x):

We can obtain f from the graph of an earlier 2π-periodic triangular
wave.
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Transforming Fourier Series Half-range Expansions

Earlier wave: g(x)

Dilation of 2/π
along both axes:

2
πg
(
πx
2

)
Translation by 1
along both axes:

-1 + 2
πg
(
π(x−1)

2

)
We already know that the Fourier series for g is

π

2
− 4

π

∞∑
k=0

cos((2k + 1)x)

(2k + 1)2
.

We simply transform it as above, and simplify.
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Transforming Fourier Series Half-range Expansions

This yields

−1 +
2

π

(
π

2
− 4

π

∞∑
k=0

cos((2k + 1)π(x − 1)/2)

(2k + 1)2

)

The cosine term inside the sum is

cos

(
(2k + 1)πx

2
− (2k + 1)π

2

)
= cos

(
(2k + 1)πx

2

)
cos

(
(2k + 1)π

2

)
+ sin

(
(2k + 1)πx

2

)
sin

(
(2k + 1)π

2

)
= (−1)k sin

(
(2k + 1)πx

2

)
.

So the series simplifies to

− 8

π2

∞∑
k=0

(−1)k

(2k + 1)2
sin

(
(2k + 1)πx

2

)
.
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Transforming Fourier Series Half-range Expansions

Example

Use existing series to find the Fourier series of the 2π-periodic
function satisfying

f (x) =

{
0 if − π ≤ x < 0,

x if 0 ≤ x < π.

The graph of f (x) (left) is the average of the sawtooth and
triangular waves shown.

= 1
2 +1

2
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Transforming Fourier Series Half-range Expansions

So, the Fourier series of f is the average of our two previous series:

1

2

(
2
∞∑
n=1

(−1)n+1

n
sin(nx) +

π

2
− 4

π

∞∑
k=0

cos((2k + 1)x)

(2k + 1)2

)

=
π

4
− 2

π

∞∑
k=0

cos((2k + 1)x)

(2k + 1)2
+
∞∑
n=1

(−1)n+1

n
sin(nx).

We could combine these into one series, but it’s easier to just leave
the cosine and sine series separate.
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Differentiating Fourier series

Term-by-term differentiation of a series can be a useful operation,
when it is valid. The following result tells us when this is the case
with Fourier series.

Theorem

Suppose f is 2π-periodic and piecewise smooth. If f ′ is also
piecewise smooth, and f is continuous everywhere, then the
Fourier series for f ′ can be obtained from that of f using
term-by-term differentiation.

Remark: This can be proven by using integration by parts in the
Euler formulas for the Fourier coefficients of f ′.
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Transforming Fourier Series Half-range Expansions

Example

Use an existing series to find the Fourier series of the 2π-periodic
function satisfying

f (x) =

{
−1 if − π ≤ x < 0,

1 if 0 ≤ x < π.

The graph of f (x) (a square wave)

shows that it is the derivative of the triangular wave.
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Transforming Fourier Series Half-range Expansions

Since the triangular wave is continuous everywhere, we can
differentiate its Fourier series term-by-term to get the series for the
square wave.

d

dx

(
π

2
− 4

π

∞∑
k=0

cos((2k + 1)x)

(2k + 1)2

)
= − 4

π

∞∑
k=0

−(2k + 1) sin((2k + 1)x)

(2k + 1)2

=
4

π

∞∑
k=0

sin((2k + 1)x)

(2k + 1)
.

Warning: The hypothesis that f is continuous is extremely
important. For example, if we term-wise differentiate the Fourier
series for the discontinuous square wave (above), we get

4

π

∞∑
k=0

cos((2k + 1)x)

which converges (almost) nowhere!
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Half-range expansions

Goal: Given a function f (x) defined for 0 ≤ x ≤ p, write f (x) as a
linear combination of sines and cosines.

Idea: Extend f to have period 2p, and find the Fourier series of
the resulting function.
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Sine and cosine series

We set

fo = odd 2p-periodic extension of f ,

fe = even 2p-periodic extension of f .

If we expand fo as a Fourier series, it will involve only sines:

∞∑
n=1

bn sin

(
nπx

p

)
.

This is the sine series expansion of f .

According to Euler’s formula the Fourier coefficients are given by

bn =
1

p

∫ p

−p
fo(x) sin

(
nπx

p

)
︸ ︷︷ ︸

even

dx =
2

p

∫ p

0
f (x) sin

(
nπx

p

)
dx .
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If we expand fe as a Fourier series, it will involve only cosines:

a0 +
∞∑
n=1

an cos

(
nπx

p

)
.

This is the cosine series expansion of f .

This time Euler’s formulas give

a0 =
1

2p

∫ p

−p
fe(x)︸ ︷︷ ︸
even

dx =
1

p

∫ p

0
f (x) dx ,

an =
1

p

∫ p

−p
fe(x) cos

(
nπx

p

)
︸ ︷︷ ︸

even

dx =
2

p

∫ p

0
f (x) cos

(
nπx

p

)
dx .

If f is piecewise smooth, both the sine and cosine series converge

to the function
f (x+) + f (x−)

2
(on the interval [0, p]).
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Example

Find the sine and cosine series expansions of f (x) = 3 − x on the
interval 0 ≤ x ≤ 3.

Taking p = 3 in our work above, the coefficients of the sine series
are given by

bn =
2

3

∫ 3

0
(3 − x) sin

(nπx
3

)
dx

=
2

3

(
−3(3 − x)

nπ
cos
(nπx

3

)
− 9

n2π2
sin
(nπx

3

)∣∣∣∣3
0

)
=

2

3
· 9

nπ
cos(0) =

6

nπ
.

So, the sine series is

6

π

∞∑
n=1

1

n
sin
(nπx

3

)
.
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The cosine series coefficients are

a0 =
1

3

∫ 3

0
3 − x dx =

1

3

(
3x − x2

2

∣∣∣∣3
0

)
=

3

2

and for n ≥ 1

an =
2

3

∫ 3

0
(3 − x) cos

(nπx
3

)
dx

=
2

3

(
3(3 − x)

nπ
sin
(nπx

3

)
− 9

n2π2
cos
(nπx

3

)∣∣∣∣3
0

)

=
2

3

(
− 9

n2π2
cos(nπ) +

9

n2π2

)
=


12

n2π2
if n is odd,

0 if n is even.

Daileda Fourier Series (Cont.)



Transforming Fourier Series Half-range Expansions

Since we can omit the terms with even n, we write n = 2k + 1
(k ≥ 0) and obtain the cosine series

a0 +
∞∑
n=1

an cos
(nπx

3

)
=

3

2
+

12

π2

∞∑
k=0

1

(2k + 1)2
cos

(
(2k + 1)πx

3

)
.

Here are the graphs of f , fo and fe (over one period):

Consequently, the sine series equals f (x) for 0 < x ≤ 3, and the
cosine series equals f (x) for 0 ≤ x ≤ 3.
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