More on Fourier Series

R. C. Daileda
@
Trinity University

Partial Differential Equations
Lecture 6.1

[DETIELE] Fourier Series (Cont.)



Transforming Fourier Series

New Fourier series from old

Recall: Given a function f(x), we can dilate/translate its graph
via multiplication/addition, as follows.

Geometric operation Mathematical implementation

Dilate along the x-axis
by a factor of a fix/a)

Dilate along the y-axis

by a factor of b bF(x)

Translat§ (right) _along F(x — )
the x-axis by ¢ units

Translate (up) along the F(x) +d

y-axis by d units
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Transforming Fourier Series

One has the following general principles.

If the graph of f(x) is obtained from g(x) by dilations and/or
translations, then the same operations can be used to obtain the
Fourier series of f from that of g.

If f(x) is a linear combination of gi(x), g&2(x), ..., gn(x), then the
Fourier series of f is the same linear combination of the Fourier

series of g1,&2,...,8n-

Remarks:
@ These are both easily derived from Euler's formulas for the
Fourier coefficients.

@ These tell us that we can construct Fourier series of “new”
functions from existing series.
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Transforming Fourier Series

Use an existing series to find the Fourier series of the 2mw-periodic
function given by f(x) = x for 0 < x < 2.

The graph of f(x):

by translating both up and to the right by 7 units.
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Transforming Fourier Series

The old sawtooth wave has Fourier series

n+1

22 sm( )’

so the function f has Fourier series

T+ zi (=) Si:(”(x — 7))
n=1

X 1yn+1

=742 Z (1,3 (sin(nx) cos(nm) — sin(nm) cos(nx))
n=1
X 1yn+1 n

:774—22( 1)+n( ! sin(nx)
n=1

9 > sin(nx)
2.7
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Transforming Fourier Series
Example

Use an existing series to find the Fourier series of the 4-periodic
function satisfying

x—2 ifl1<x<3

{—x if—1<x<1

|
VT AV VAN

We can obtain f from the graph of an earlier 2m-periodic triangular
wave.
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bl
Earlier wave: g(x) /\W

Dilati f 2 ?
A T SN AN

along both axes: — RS —

Translation by 1 1+ 2g (ﬂ(x—l)) s
along both axes: ™ 2 T AVE VAR

We already know that the Fourier series for g is

7_72cos ((2k+1) )

(2k 4+ 1)?

We simply transform it as above, and simplify.
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Transforming Fourier Series

This yields

14 2 (77 B ﬁi cos((2k + 1)m(x — 1)/2))

2
m\2 7Tl (2k+1)

The cosine term inside the sum is

cos ((Zk +mx (2 + 1)7r> e <(2’<+1)”> cos <(2k+1)7r)

2 2 2 2
+sin ((2k + l)ﬂ'x) .in <(2k + 1)7r>

2 2
. [ (2k + 1)mx
— (1) sin (KDY
(=1)"sin < 5 )
So the series simplifies to

8 = (—1)*  [(2k+1)7mx
_772;)(%(—!—1)25'“( 5 )
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Transforming Fourier Series

Example

Use existing series to find the Fourier series of the 2w-periodic
function satisfying

f(x) =

0 if —71<x<0,
x Ifo<x<m.

The graph of f(x) (left) is the average of the sawtooth and
triangular waves shown.

N=
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Transforming Fourier Series

So, the Fourier series of f is the average of our two previous series:
n+1 4

™ > cos((2k + 1)x)
(22 sin( )+2_7rkz_;) (2k + 1) )

cos( 2k+ )X) = (—1)"
:———Z k1 +; - sin(nx).

We could combine these into one series, but it's easier to just leave
the cosine and sine series separate.
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Transforming Fourier Series

Differentiating Fourier series

Term-by-term differentiation of a series can be a useful operation,
when it is valid. The following result tells us when this is the case
with Fourier series.

Suppose f is 27-periodic and piecewise smooth. If f' is also
piecewise smooth, and f is continuous everywhere, then the
Fourier series for f' can be obtained from that of f using
term-by-term differentiation.

Remark: This can be proven by using integration by parts in the
Euler formulas for the Fourier coefficients of f.
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Transforming Fourier Series
Example

Use an existing series to find the Fourier series of the 2mw-periodic
function satisfying

-1 if —n<
F(x) = / T <x<0,
1 if0<x <.

The graph of f(x) (a square wave)

1

-2n - ; b1 2\7: 3n 4m

shows that it is the derivative of the triangular wave.

n

-2r - T 27 R/ 41
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Transforming Fourier Series

Since the triangular wave is continuous everywhere, we can
differentiate its Fourier series term-by-term to get the series for the
square wave.

d (77 4icos((2k+1)x)>_ 4i (2k + 1) sin((2k + 1)x)
Sy T ) = 2
dx ™ (2k +1) e (2k 4+ 1)?
_ioosm ((2k + 1)x)
(lwrt (2k+1)

Warning: The hypothesis that f is continuous is extremely
important. For example, if we term-wise differentiate the Fourier
series for the discontinuous square wave (above), we get

% i cos((2k + 1)x)
k=0

which converges (almost) nowhere!
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Half-range Expansions

Half-range expansions

Goal: Given a function f(x) defined for 0 < x < p, write f(x) as a
linear combination of sines and cosines.

Idea: Extend f to have period 2p, and find the Fourier series of
the resulting function.

fG(X)
-p b Zp \ 3‘10 Ap 5p
f(x)
P fe(X)
-p p 2Vp 3p 4p 5p
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Half-range Expansions

Sine and cosine series

We set

f, = odd 2p-periodic extension of f,

fo = even 2p-periodic extension of f.

If we expand f, as a Fourier series, it will involve only sines:
> nmx
S bysin () .
n=1 P

This is the sine series expansion of f.

According to Euler’s formula the Fourier coefficients are given by

1 [P 2 [P
by = / ,(x)sin (’W) dx = / f(x)sin <m> dx.
pJ oy p pJo p

even
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Half-range Expansions

If we expand f. as a Fourier series, it will involve only cosines:
[e.9]
nmx
ao + g ap Cos <> .
n=1 p
This is the cosine series expansion of f.

This time Euler's formulas give

- et ax=3 [T
a = — fde:/fxdx7
T 2p ) 2 p Jo

p

even

1 2 [P
ap = / fe(x) cos <n7rx> dx = / f(x) cos <n7rx) dx.
pJp p P Jo p

even

If f is piecewise smooth, both the sine and cosine series converge
f(x+)+ f(x—)
2
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Half-range Expansions

Find the sine and cosine series expansions of f(x) = 3 — x on the
interval 0 < x < 3.

Taking p = 3 in our work above, the coefficients of the sine series

are given by
2 3
by = 3/0 (3 — x)sin (?) dx
3
0)

2 (B (1) L (1)

2
=_- icos(O) = i

3 nmw nm

So, the sine series is
oo
6 1 . /nmx
— E — Sin T .
T n
n=1



Half-range Expansions

The cosine series coefficients are
3
3
0 2

13 1 x?
= — — d = — _ —
ao 3/0 3 —xdx 3 <3x >

and forn >1

3
a,,:i/o (3—x)cos<T> dx

_2(3B-x) sin (mrx) 9 cos (mjx) 3
-3 nm 3 n?m? 3 /o
12
5 9 9 m if nis Odd7
=3 <‘n27rzc°s(””)+ w) =
0 if nis even.
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Half-range Expansions

Since we can omit the terms with even n, we write n = 2k + 1
(k > 0) and obtain the cosine series

= nmxy 312 & 1 (2k + 1)7x
ao—i-;ancos(?’)—z—i—ﬂkzzowcos(3).

Here are the graphs of f, f, and f. (over one period):

3 3
2
2 1
. B 2 3
3 2 0 12 3
0 .
o 1 2 3 A

Consequently, the sine series equals f(x) for 0 < x < 3, and the
cosine series equals f(x) for 0 < x < 3.
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