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Recall: Relative to the inner product

〈f , g〉 =

∫ π

−π
f (x)g(x) dx

the functions

1, cos(x), cos(2x), cos(3x), . . . sin(x), sin(2x), sin(3x), . . .

satisfy the orthogonality relations

〈cos(mx), sin(nx)〉 = 0,

〈cos(mx), cos(nx)〉 =


0 if m 6= n,

π if m = n 6= 0,

2π if m = n = 0,

〈sin(mx), sin(nx)〉 =

{
0 if m 6= n,

π if m = n.
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By the linearity of the inner product, if

f (x) = a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)) ,

then

〈f (x), cos(mx)〉 = a0

=0 unless m=0︷ ︸︸ ︷
〈1, cos(mx)〉+

∞∑
n=1

(an

=0 unless m=n︷ ︸︸ ︷
〈cos(nx), cos(mx)〉

+ bn 〈sin(nx), cos(mx)〉︸ ︷︷ ︸
=0

)

= am 〈cos(mx), cos(mx)〉

=

{
2πa0 if m = 0,

πam if m 6= 0.
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Likewise, one can show that

〈f (x), sin(mx)〉 = bm 〈sin(mx), sin(mx)〉 = πbm.

Solving for the coefficients gives:

Theorem (Euler’s Formulas)

If f is 2π-periodic and piecewise smooth, then its Fourier
coefficients are given by

a0 =
〈f (x), 1〉
〈1, 1〉

=
1

2π

∫ π

−π
f (x) dx ,

an =
〈f (x), cos(nx)〉
〈cos(nx), cos(nx)〉

=
1

π

∫ π

−π
f (x) cos(nx) dx (n 6= 0),

bn =
〈f (x), sin(nx)〉
〈sin(nx), sin(nx)〉

=
1

π

∫ π

−π
f (x) sin(nx) dx .
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Remarks

Technically we should have used f (x+)+f (x−)
2 . However, the

integrals cannot distinguish between this and f (x).

Because all the functions in question are 2π-periodic, we can
integrate over any convenient interval of length 2π.

If f (x) is an odd function, so is f (x) cos(nx), and so an = 0
for all n ≥ 0.

If f (x) is an even function, then f (x) sin(nx) is odd, and so
bn = 0 for all n ≥ 1.
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Example

Find the Fourier series for the 2π-periodic function that satisfies
f (x) = x for −π < x ≤ π.

The graph of f (a sawtooth wave):

Because f is odd, we know

an = 0 (n ≥ 0).
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According to Euler’s formula:

bn =
1

π

∫ π

−π
x sin(nx) dx

=
1

π

(
−x cos(nx)

n
+

sin(nx)

n2

∣∣∣∣π
−π

)
=

1

π

(
−π cos(nπ)

n
− π cos(−nπ)

n

)
=
−2 cos(nπ)

n
=

(−1)n+12

n
.

Therefore, the Fourier series of f is

∞∑
n=1

(−1)n+12

n
sin(nx) = 2

∞∑
n=1

(−1)n+1 sin(nx)

n
.

Remark: Except where it is discontinuous, this series equals f (x).
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Example

Find the Fourier series of the 2π-periodic function satisfying
f (x) = |x | for −π ≤ x < π.

The graph of f (a triangular wave):

This time, since f is even,

bn = 0 (n ≥ 1).
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By Euler’s formula we have

a0 =
1

2π

∫ π

−π
|x | dx =

1

π

∫ π

0
x dx =

1

π

x2

2

∣∣∣∣π
0

=
π

2

and for n ≥ 1

an =
1

π

∫ π

−π
|x | cos(nx)︸ ︷︷ ︸

even

dx =
2

π

∫ π

0
x cos(nx) dx

=
2

π

(
x sin(nx)

n
+

cos(nx)

n2

∣∣∣∣π
0

)
=

2

π

(
cos(nπ)

n2
− 1

n2

)

=
2

πn2
((−1)n − 1) =


−4

πn2
if n is odd,

0 if n is even.
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In the Fourier series we may therefore omit the terms in which n is
even, and assume that n = 2k + 1, k ≥ 0:

a0 +
∞∑
n=1

an cos(nx) =
π

2
+
∞∑
k=0

−4

π(2k + 1)2
cos((2k + 1)x)

=
π

2
− 4

π

∞∑
k=0

cos((2k + 1)x)

(2k + 1)2
.

Remarks:

Since k is simply an index of summation, we are free to
replace it with n again, yielding

π

2
− 4

π

∞∑
n=0

cos((2n + 1)x)

(2n + 1)2
.

Because f (x) is continuous everywhere, this equals f (x) at all
points.
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Example

Use the result of the previous exercise to show that

1 +
1

9
+

1

25
+

1

49
+ · · · =

∞∑
n=0

1

(2n + 1)2
=
π2

8
.

If we set x = 0 in the previous example, we get

0 = f (0) =
π

2
− 4

π

∞∑
n=0

cos(0)

(2n + 1)2
=
π

2
− 4

π

∞∑
n=0

1

(2n + 1)2

Solving for the series gives the result.

Remark: In Calculus II you learned that this series converges, but
were unable to obtain its exact value.
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Example

Find the Fourier series of the 2π-periodic function satisfying
f (x) = 0 for −π ≤ x < 0 and f (x) = x2 for 0 ≤ x < π.

The graph of f :

Because f is neither even nor odd, we must compute all of its
Fourier coefficients directly.
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Since f (x) = 0 for −π ≤ x < 0, Euler’s formulas become

a0 =
1

2π

∫ π

0
x2 dx =

1

2π

(
x3

3

∣∣∣∣π
0

)
=
π2

6

and for n ≥ 1

an =
1

π

∫ π

0
x2 cos(nx) dx =

1

π

(
x2 sin(nx)

n
+

2x cos(nx)

n2
− 2 sin(nx)

n3

∣∣∣∣π
0

)
=

1

π
· 2π cos(nπ)

n2
=

2(−1)n

n2
,

bn =
1

π

∫ π

0
x2 sin(nx) dx =

1

π

(
−x2 cos(nx)

n
+

2x sin(nx)

n2
+

2 cos(nx)

n3

∣∣∣∣π
0

)
=

1

π

(
−π

2 cos(nπ)

n
+

2 cos(nπ)

n3
− 2

n3

)
=

(−1)n+1π

n
+

2((−1)n − 1)

πn3
.
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Therefore the Fourier series of f is

π2

6
+
∞∑
n=1

(
2(−1)n

n2
cos(nx) +

(
(−1)n+1π

n
+

2((−1)n − 1)

πn3

)
sin(nx)

)
.

This will agree with f (x) everywhere it’s continuous.
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Convergence of Fourier series

Given a Fourier series

a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)) (1)

let its Nth partial sum be

sN(x) = a0 +
N∑

n=1

(an cos(nx) + bn sin(nx)) . (2)

According to the definition of an infinite series, the Fourier series
(1) is equal to

lim
N→∞

sN(x).
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According to the definition of the limit:

We can approximate the (infinite) Fourier series (1) by the
(finite) partial sums (2).

The approximation of (1) by (2) improves (indefinitely) as we
increase N.

Because sN(x) is a finite sum, we can use a computer to graph it.

In this way, we can visualize the convergence of a Fourier series.

Let’s look at some examples...
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These examples illustrate the following results. In both, f (x) is
2π-periodic and piecewise smooth.

Theorem (Uniform convergence of Fourier series)

If f (x) is continuous everywhere, then the partial sums sN(x) of its
Fourier series converge uniformly to f (x) as N →∞.
That is, by choosing N large enough we can make sN(x) arbitrarily
close to f (x) for all x simultaneously.

Theorem (Wilbraham-Gibbs phenomenon)

If f (x) has a jump discontinuity at x = c , then the partial sums
sN(x) of its Fourier series always “overshoot” f (x) near x = c .
More precisely, as N →∞, the the ratio between the peak of the
overshoot and the height of the jump tends to

1

π

∫ π

0

sint

t
dt − 1

2
= 0.08948 . . . (about 9% of the jump).
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The Wilbraham-Gibbs phenomenon

A function f (x) (in blue) with a jump discontinuity and a partial
sum sN(x) (in red) of its Fourier series:

h

j
N

lim
N→∞

jN
h

= 0.08948 . . .
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General Fourier series

If f (x) is 2p-periodic and piecewise smooth, then f̂ (x) = f (px/π)
has period 2p

p/π = 2π, and is also piecewise smooth.

It follows that f̂ (x) has a Fourier series:

f̂ (x+) + f̂ (x−)

2
= a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)).

Since f (x) = f̂ (πx/p), we find that f also has a Fourier series:

f (x+) + f (x−)

2
= a0 +

∞∑
n=1

(
an cos

(
nπx

p

)
+ bn sin

(
nπx

p

))
.
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We can use Euler’s formulas to find an and bn. For example

a0 =
1

2π

∫ π

−π
f̂ (x) dx =

1

2π

∫ π

−π
f
(px
π

)
dx =

1

2p

∫ p

−p
f (t) dt,

where in the final equality we used the substitution t = px/π.

In the same way one can show that for n ≥ 1

an =
1

p

∫ p

−p
f (t) cos

(
nπt

p

)
dt,

bn =
1

p

∫ p

−p
f (t) sin

(
nπt

p

)
dt.

Since t is simply a “dummy” variable of integration, we may
replace it with x in each case.
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Remarks on general Fourier series

Everything we’ve done with 2π-periodic Fourier series continues to
hold in this case, with p replacing π:

We can compute general Fourier coefficients by integrating
over any “convenient” interval of length 2p.

If p is left unspecified, then the formulae for an and bn may
involve p.

If f (x) is even, then bn = 0 for all n.

If f (x) is odd, then an = 0 for all n.

We still have the uniform convergence theorem and
Wilbraham-Gibbs phenomenon.
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Example

Find the Fourier series of the 2p-periodic function that satisfies
f (x) = 2p − x for 0 ≤ x < 2p.

The graph of f (x):

We will use Euler’s formulas over the interval [0, 2p] to simplify our
calculations.
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We have

a0 =
1

2p

∫ 2p

0
2p − x dx =

1

2p

(
2px − x2

2

∣∣∣∣2p
0

)
= p

and for n ≥ 1

an =
1

p

∫ 2p

0
(2p − x) cos

(
nπx

p

)
dx

=
1

p

 p(2p − x) sin(nπxp )

nπ
−

p2 cos(nπxp )

n2π2

∣∣∣∣∣
2p

0


=

1

p

(
−p2 cos(2nπ)

n2π2
+

p2

n2π2

)
= 0,
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bn =
1

p

∫ 2p

0
(2p − x) sin

(
nπx

p

)
dx

=
1

p

−p(2p − x) cos(nπxp )

nπ
−

p2 sin(nπxp )

n2π2

∣∣∣∣∣
2p

0


=

1

p

(
2p2

nπ

)
=

2p

nπ
.

So the Fourier series of f is

p +
∞∑
n=1

2p

nπ
sin

(
nπx

p

)
= p +

2p

π

∞∑
n=1

1

n
sin

(
nπx

p

)
.

Remark: This series is equal to f (x) everywhere it is continuous.
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