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The vibrating string ... again!

Recall: The motion of an ideal string of length L can be modeled
by the 1-D wave equation

Upr = C2lyy (0<x< L, t>0),

subject to the boundary and initial conditions

(O t) - U(L7 t) (t > 0)7
u(x,0) = f(x),
ut(x,O) = g(x) (0 <x < L).

Remarks:

@ Previously: we attempted to express u(x, t) as a series using
the principle of superposition. This led to the need for Fourier

series.
@ Now: we will motivate and complete our earlier procedure.
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Separation of Variables

Separation of variables

We seek “simple” solutions of the form
u(x, t) = X(x)T(t).
Differentiating yields
e = XT", e = X"'T.
Plugging into the wave equation gives XT” = c?X"T, or

. " 11 .
function X T function

of x only X 2T of t only

Since x and t are independent, both sides must be constant.
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Separation of Variables

We introduce the separation constant k:

X// T//
L k=
X c2T

This yields two ODEs in X and T:

X"—kX =0, T" — ke®T = 0.

Imposing the boundary conditions we find that

This gives us a boundary value problem in X:

X" — kX =0, X(0) = X(L) = 0. (1)
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Separation of Variables

Solving for X

We now determine the values of k for which (1) has nontrivial
solutions.

Case 1: k = ;> > 0. We need to solve X" — X = 0. The
characteristic equation is

rP—u?=0 = r=ypu,

which gives the general solution X = ¢cie** + ;e ™#*. The
boundary conditions tell us that

L —ul
a+o=ce' +ce " =0,

or in matrix form

(oo ) (2)-(0)
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Separation of Variables

The determinant here is e *L — et £ 0, which means that
c1 = ¢ = 0. So the only solution to the BVP in this case is X = 0.

Case 2: k = 0. We need to solve X" = 0. Integrating twice gives
X =cax+ o.

The boundary conditions give ¢ = ¢1L + ¢ = 0, which imply that
c1 = ¢ =0, and hence X = 0 again.

Case 3: k = —u? < 0. We need to solve X” 4 12X = 0. The
characteristic equation is

P+u?=0 = r==ip,

which gives the general solution X = ¢y cos(ux) + ¢ sin(ux).
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Separation of Variables

The boundary conditions tell us that
c1 = ¢ cos(pul) + crsin(ul) = 0.

We will have nontrivial solutions iff sin(uL) = 0. This happens iff

ul € 7, or
nm
W=pfn=— NE 2.
L
Choosing ¢ = 1 for convenience, we obtain the solutions
X = X, = sin(upx) = sin (nLLX) , neN.

Remarks:

@ We can omit n < 0 since they just yield multiples of these
solutions.

@ Up to the choice of the constant, these are the only nontrivial
solutions to the BVP for X.
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Separation of Variables

Solving for T

Having determined the X portion of our separated solution, we
now turn to T.

Given any n € N, the separation constant in Case 3 is k = —p2.
So T solves T" — kc®T = T" + (nc)>T = 0. The characteristic
equation is

r? 4+ (unc)> =0 = r=iuc,

which gives the general solution

T = T, = bycos(pnct)+ b sin (unct) = b, cos(Apt) + by sin(Ant),

where:
@ b, and b}, are constants (to be determined later);
nm
@ \p = pupc = CT.
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Separation of Variables

The normal modes

Putting the two factors together we obtain the normal modes of
the wave equation (for n € N)

un(x, t) = Xn(x) Th(t) = sin(unx) (bp cos(Ant) + b sin(Ant)) .

Remarks:

@ The nth normal mode:
« is spatially 27/, = 2L/n-periodic;
* is temporally 27w /\, = 2L/nc-periodic.
@ As n increases, the normal modes oscillate more rapidly (in
space and time).

e Up to a scalar multiple and a phase shift (in time) the modes
are all of the form sin(u,x) cos(Ant).
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Superposition

Superposition

Recall: Because the functions u, solve the vibrating string
problem, the principle of superposition ensures that

u(x, t) = Z up(x,t) = Z sin(nx) (bn cos(Ant) + by sin(Ant))

n=1 n=1

solves it, too.

Remarks:

@ Because it is a common period for each summand, we see
that 2L/c is a temporal period for this solution.

@ Although this solves the wave equation and has fixed
endpoints, we have yet to impose the initial conditions.
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Superposition

Initial conditions

We now use the initial conditions to determine {b,} and {b};}.
Setting t = 0 yields

f(x) = u(x,0) Zb sin(pnx) = ib" sin (mrTx> ,
n=1

which is the 2L-periodic sine expansion of f(x). Hence

Daileda 1-D Wave Equation Redux



Now differentiate with respect to t and set t = O:
> > nmx
g(x) = u(x,0) = Z:lx\,,b: sin(unpx) = z;)\,,b: sin (T) .
n= n=

This is the 2L-periodic sine expansion of g(x). Hence

2 L
Anb; = L/o g(x)sin (?) dx,

or, since A\, = nmc/L:

b, = 2 Lg(x) sin (?) dx.

" enm J
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Superposition

Theorem (Series solution to the vibrating string problem)

The solution of the boundary value problem

Upt = C2Usy (0<x< L, t>0),

u(0,t) =u(L,t)=0 (t>0),

u(x,0) = f(x), ut(x,0)=g(x) (0<x<l)
is given by

u(x, t) = Z sin(nx) (bn cos(Ant) + by sin(Ant))

n=1

where i, = nTW An = ppc and

2 [t ./ NTX . 2 ./ NTX
bn = L/O f(X)Sln (T) dX7 bn = % o g(X)SIn (T) dx.
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Superposition

Remarks

@ Note that the initial shape and velocity influence the solution
independently. In particular:
« If f(x) =0, then b, =0 for all n.

« If g(x) =0, then b} =0 for all n.
@ The solution can also be written as

u(x,t) = Z b sin(pnx) cos(Ant) + Z by sin(punx) sin(Ant).
n=1 n=1
@ Note that

b, = (nth 2L-periodic sine series coeff. of f),

1
by = " (nth 2L-periodic sine series coeff. of g).

n
n
So, if the sine series of f or g are known, we need not use the
integral formulae.
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Solve the vibrating string problem
Ut = 1000y (0<x<2 t>0),
u(0,t) =u(2,t) =0 (t >0),
5 if0 < 1
ux0)=42 NN
1-35 if1<x<2,
ut(x,0) = 0.

We have L =2, ¢ =10 and b} = 0 for all n. Here's the initial
shape (f(x)):

0 05 1 15 2
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According to exercise 2.4.17b (with p=L =2, a=1 and

h=1/2):
4 isin(nm/2) . /nmx _ 4sin(nm/2)
f(X)—wznZ_l () = =
We therefore have
u(x,t) = Z by sin(pnx) cos(Ant)
n=1
4 sin(nm/2) . fnmx
:ﬁz P sm( > )cos(5n7rt), (A)
n=1

since i, = nm/2 and A\, = ppc = 5nm.
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Suppose that in the preceding problem we instead require that
ur(x,0) =1 for 0 < x < 2. Find u(x, t) in this case.

We only need to find b}, and add to our earlier work.

By exercise 2.3.1, the 4-periodic sine series for g(x) =1 is

o0

— sin .
s 2k +1 2
Note only odd indexed modes occur. Therefore
4
A b1 =
AL T 2k 4 1)
. 4 4

= by

- )\2k+1(2k + ].)TI' - 5(2/( + ].)271'2'
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It follows that the b}, portion of the solution is

Z by, sin (nx)sin (Apt) = Z b3y 41 sin (pok41x) sin (Aok41t)
n=1 k=0

4 & 2k + Dx)
_2; 2k+1 < ' >sm(5(2k—|—1)7rt). (B)

The overall solution is the sum of this and our previous answer:

u(x, t) = (A) + (B).
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