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1 The Chinese Remainder Theorem

We begin with an example.

Example 1. Consider the system of simultaneous congruences

x ≡ 3 (mod 5),

x ≡ 2 (mod 6).
(1)

Clearly x = 8 is a solution. If y were another solution, then we would have y ≡ 8(mod 5)
and y ≡ 8(mod 6). Hence 5|y − 8 and 6|y − 8. As (5, 6) = 1, this means 30|y − 8 or y ≡ 8
(mod 30). As this line of reasoning is completely reversible, we find that the set of solutions
to the simultaneous congruences (1) is the congruence class 8 + 30Z. Hence, modulo 30,
there is a unique solution to the system (1). �

The Chinese remainder theorem tells us that, under an appropriate hypothesis on the
moduli, systems of the type in the previous example always have solutions that are unique
modulo the product of the moduli. Before we state it, however, we need to generalize a
result from the homework.

Lemma 1. Let a1, a2, . . . , an ∈ Z be pairwise relatively prime. If b ∈ Z and ai|b for all i,
then a1a2 · · · an|b.

Proof. By induction on n. We take as our base case n = 2. Although this case was given as
a homework exercise, in the interest of completeness we prove it here anyway. So suppose
a1 and a2 are relatively prime and both divide b. Use Bézout’s lemma to write ra1 + sa2 = 1
for some r, s ∈ Z. Also write b = b1a1 and b = b2a2. We multiply the Bézout relation by b
and then substitute in the divisibility equations:

b = bra1 + bsa2 = b2a2ra1 + b1a1sa2 = (b2r + b1s)a1a2

which implies that a1a2|b.
Now assume that the result holds for some n ≥ 2. Let a1, a2, . . . an, an+1 ∈ Z be pairwise

relatively prime and suppose that ai|b for all i. By the inductive hypothesis, a1a2 · · · an|b.
It therefore suffices so show that a1a2 · · · an and an+1 are relatively prime, for the result will
then follow from the n = 2 case. Let d = (a1a2 · · · an, an+1). If d 6= 1, then there is a prime
p|d. It follows that p|a1a2 · · · an and p|an+1. By (the extended version of) Euclid’s lemma,
we must have p|ai for some 1 ≤ i ≤ n. But then p is a nontrivial common divisor of ai and
an+1, contradicting the fact that (ai, an+1) = 1. Hence d = 1 and, as noted above, the n+ 1
case is established. By induction, the lemma holds for all n ≥ 2.
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The auxiliary fact established in the final paragraph of the preceding proof is worth
recording independently.

Corollary 1. If a1, a2, . . . , an ∈ Z are pairwise relatively prime, then (a1a2 · · · an−1, an) = 1.

We are now ready for our main result.

Theorem 1 (Chinese remainder theorem). Let n1, n2, . . . nr ∈ N be pairwise relatively prime.
For any a1, a2, . . . , ar ∈ Z the solution set of the system of simultaneous congruences

x ≡ a1 (mod n1),

x ≡ a2 (mod n2),

...

x ≡ ar (mod nr),

(2)

consists of a unique congruence class modulo N = n1n2 · · ·nr.

Proof. We will give an indirect, nonconstructive proof. We will return to the question of
how to actually find the solution to (2) once we have proven the theorem. Consider the map

ρ : Z/NZ→ Z/n1Z× Z/n2Z · · · × Z/n1Z
a+NZ 7→ (a+ Z/n1Z, a+ Z/n2Z, . . . , a+ Z/nrZ).

i.e. ρ maps the class of a modulo N to the r-tuple of classes of a modulo the ni. ρ is well-
defined since if a + NZ = b + NZ then N |a − b. As ni|N for all i, this means ni|a − b and
hence a+ niZ = b+ niZ for all i.

To prove the theorem it suffices to prove that ρ is a bijection. To see this, first notice that
x solves the system (2) if and only if x+niZ = ai +niZ for all i and that this happens if and
only if ρ(x+NZ) = (a1 +Z/n1Z, a2 +Z/n2Z, . . . , ar +Z/nrZ). If ρ is a bijection, then there
exists a unique a+NZ ∈ Z/NZ so that ρ(a+NZ) = (a1+Z/n1Z, a2+Z/n2Z, . . . , ar+Z/nrZ).
According to what we first noticed, this shows that x solves (2) if and only if x ∈ a + NZ.
This is precisely what the theorem states.

It remains to prove that ρ is bijective. To do so we only need to show that ρ is injective
since both its domain and codomain have size n1n2 · · ·nr = N . So suppose ρ(a + NZ) =
ρ(b+NZ) for some a, b ∈ Z. Then a+ niZ = b+ niZ, or ni|a− b, for all i. Since the ni are
pairwise relatively prime, this means their product, N , divides a − b by Lemma 1. Hence
a+NZ = b+NZ and ρ is injective. This completes the proof.

Remark 1.

• The Chinese remainder theorem (CRT) asserts that there is a unique class a + NZ so
that x solves the system (2) if and only if x ∈ a + NZ, i.e. x ≡ a(mod N). Thus the
system (2) is equivalent to a single congruence modulo N .

• Although we only proved one implication, one can actually show that the CRT is equiv-
alent to the bijectivity of ρ.

H

Now we turn to the question of actually producing the solution to the system (2) of
the Chinese remainder theorem. Since we know the solution is unique modulo the product
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N of the moduli, if we can find a single solution, we can find them all by simply adding
NZ. It turns out that producing a particular solution is not that hard if one is just a bit
clever. Before describing it, we make a quick observation. Suppose n1, n2, . . . , nr are pairwise
relatively prime. Let N = n1n2 · · ·nr and Ni = N/ni (so that Ni is the product of all the nj

except ni). Then ni and Ni are relatively prime for all i by Corollary 1.

Theorem 2. Let n1, n2, . . . , nr ∈ N be pairwise relatively prime and define N , Ni as above.
Let mi be a modular inverse of Ni modulo ni, i.e. miNi ≡ 1(mod ni). Given a1, a2, . . . , ar ∈ Z
set

a = a1m1N1 + a2m2N2 + · · ·+ armrNr.

Then a solves the system (2) of the Chinese remainder theorem. Therefore the solution set
of (2) is a+NZ, i.e. x is a solution if and only if x ≡ a(mod N).

Proof. As noted above, in light of Theorem 1 it suffices to simply show that a is a solution
to the system (2). We will show that a ≡ a1 (mod n1). The same argument works for all of
the other congruences. Since n1|Nj for j ≥ 2, a ≡ a1m1N1 ≡ a1 (mod n1) by our choice of
m1. That’s it.

Remark 2.

• According to comments that we’ve already made, the element a constructed in Theorem
2 satisfies

ρ(a+NZ) = (a1 + Z/n1Z, a2 + Z/n2Z, . . . , ar + Z/nrZ).

We have therefore proven, independently and constructively, that ρ is surjective. Once
more appealing to the fact that the domain and codomain of ρ have the same size, we
conclude that ρ must be injective as well and is thus a bijection. This provides a second
proof of the CRT.

• Another choice for a in Theorem 2 is

a = a1N
ϕ(n1)
1 + a2N

ϕ(n2)
2 + · · ·+ arN

ϕ(nr)
r

as is easily seen by appealing to Euler’s theorem. The main difficulty with using this
expression, however, is that ϕ(n) can be difficult to compute.

H

Example 2. Solve the system of congruences

x ≡ 1 (mod 25),

x ≡ 17 (mod 26),

x ≡ 11 (mod 27).

We have n1 = 25 = 5 · 5, n2 = 26 = 2 · 13 and n3 = 33. Since their factorizations involve
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distinct primes, n1, n2 and n3 are certainly pairwise relatively prime. Moreover

N1 = n2n3 = 26 · 27 ≡ 1 · 2 ≡ 2 (mod 25) (25 = n1),

m1 ≡ 13 (mod 25),

N2 = n1n3 = 25 · 27 ≡ −1 (mod 26) (26 = n2),

m2 ≡ −1 (mod 26),

N3 = n1n2 = 25 · 26 ≡ (−2)(−1) ≡ 2 (mod 27) (27 = n3),

m3 ≡ 14 (mod 27).

Thus x is a solution if and only if

x ≡ 1 · 26 · 27 · 13 + 17 · 25 · 27 · (−1) + 11 · 25 · 26 · 14 (mod 25 · 26 · 27)

≡ 97751 (mod 17550)

≡ 10001 (mod 17550).

�

Example 3. One day Dr. Daileda decided to sort through his CD collection. When he put
them into piles of 8 CDs, he had 4 left over. When he put them into piles of 17 CDs he had
15 left over. And when he put them into piles of 25 he had 4 left over. What is the smallest
possible number of CDs that Dr. Daileda had?

The number of CDs must simultaneously solve the congruences

x ≡ 4 (mod 8),

x ≡ 15 (mod 17),

x ≡ 4 (mod 25).

Since n1 = 8, n2 = 17 and n3 = 25 are clearly relatively prime, we may apply the Chinese
remainder theorem. We have

N1 = 17 · 25 ≡ 1 · 1 ≡ 1 (mod 8) ⇒ m1 ≡ 1 (mod 8), (3)

N2 = 8 · 25 ≡ 8 · 8 = 64 ≡ 13 (mod 17) ⇒ m2 ≡ 4 (mod 17), (4)

N3 = 8 · 17 ≡ 8(−8) = −64 ≡ −14 ≡ 11 (mod 25) ⇒ m3 ≡ 16 (mod 25). (5)

Hence the solutions to this set of congruences are given by

x ≡ 4 · 17 · 25 · 1 + 15 · 8 · 25 · 4 + 4 · 8 · 17 · 16 (mod 8 · 17 · 25)

≡ 22404 (mod 3400)

≡ 2004 (mod 3400).

Since 2004 is the least positive element in its congruence class modulo 3400 (it’s a remainder),
this is the fewest number of CDs. �

Example 4. Use the second remark after Theorem 2 to solve the system of congruences

x ≡ 4 (mod 5),

x ≡ 2 (mod 7),

x ≡ 2 (mod 8),

x ≡ 1 (mod 9).
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We have N = 2520 and

N
ϕ(n1)
1 = (7 · 8 · 9)4 = 64524128256 ≡ 2016 (mod 2520),

N
ϕ(n2)
2 = (5 · 8 · 9)6 = 2176782336000000 ≡ 1800 (mod 2520),

N
ϕ(n3)
3 = (5 · 7 · 9)4 = 9845600625 ≡ 945 (mod 2520),

N
ϕ(n4)
4 = (5 · 7 · 8)6 = 481890304000000 ≡ 280 (mod 2520).

Hence
a ≡ 4 · 2016 + 2 · 1800 + 2 · 945 + 1 · 280 = 13834 ≡ 1234 (mod 2520)

so that the solution is
x ≡ 1234 (mod 2520).

�

2 CRT and Units Modulo n

2.1 Direct Products of Rings

Given rings R1, R2, . . . , Rn the set R1×R2×· · ·×Rn is endowed with two binary operations
which arise by simply applying the operations of the individual Ri coordinate-wise:

(r1, r2, . . . , rn) + (s1, s2, . . . , sn) = (r1 + s1, r2 + s2, . . . , rn + sn),

(r1, r2, . . . , rn) · (s1, s2, . . . , sn) = (r1 · s1, r2 · s2, . . . , rn · sn).

It is not difficult to show that R1 ×R2 × · · · ×Rn together with these operations is again a
ring, called the direct product of R1, R2, . . . , Rn. Its zero is (0R1 , 0R2 , . . . , 0Rn) and its identity
is (1R1 , 1R2 , . . . , 1Rn). Consequently, it is not difficult to show that

(R1 ×R2 × · · · ×Rn)× = R×1 ×R×2 × · · · ×R×n .

That is, an element of the direct product is a unit if and only if every coordinate is a unit
(in its respective ring).

The map ρ in the proof of the Chinese remainder theorem can therefore be viewed as a
bijection between two rings. It actually has another property relative to ring structure that
is very useful: it preserves ring operations. For example

ρ((a+NZ) + (b+NZ)) = ρ((a+ b) + nZ)

= ((a+ b) + n1Z, (a+ b) + n2Z, . . . , (a+ b) + nrZ)

= ((a+ n1Z) + (b+ n1Z), (a+ n2Z) + (b+ n2Z), . . . , (a+ nrZ) + (b+ nrZ))

= (a+ n1Z, a+ n2Z, . . . , a+ nrZ) + (b+ n1Z, b+ n2Z, . . . , b+ nrZ)

= ρ(a+NZ) + ρ(b+NZ).

An entirely similar computation shows that

ρ((a+NZ)(b+NZ)) = ρ(a+NZ)ρ(b+NZ).

Maps between rings that preserve both binary operations are called ring homomorphisms.
If a ring homomorphism is bijective it is called an isomorphism and the domain and codomain
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are said to be isomorphic. So we see that ρ is an isomorphism. Isomorphic rings are “the
same” in the sense that they share their ring-theoretic properties. For example, we have the
next result.

Lemma 2. Let α : R→ S be an isomorphism of rings. Then α(1R) = 1S and α|R× gives a
(multiplication preserving) bijection from R× to S×.

Proof. Since α is surjective, there is an r ∈ R so that α(r) = 1S. Then α(1R) = α(1R) · 1S =
α(1R)α(r) = α(1R · r) = α(r) = 1S. Since α|R× is injective, to prove the second part of the
theorem it suffices to show that α(R×) = S×. Let a ∈ R×. Then 1S = α(1R) = α(aa−1) =
α(a)α(a−1). Likewise, α(a−1)α(a) = 1S. Hence α(R×) ⊆ S×. Let s ∈ S×. Choose a, b ∈ R
so that α(a) = s and α(b) = s−1. Then α(ab) = α(a)α(b) = ss−1 = 1S = α(1R). Since
α is injective, we must have ab = 1R. Similarly, ba = 1R. Hence a ∈ R× and therefore
S× ⊆ α(R×). It follows that the two sets are equal which we have already noted finishes the
proof.

2.2 Decomposition of (Z/nZ)×

Finally, let’s apply the discussion of the preceding section to the isomorphism ρ.

Corollary 2. Let n1, n2, . . . , nr ∈ N be pairwise relatively prime. If N = n1n2 · · ·nr, then
the map

a+NZ 7→ (a+ n1Z, a+ n2Z, . . . , a+ nrZ)

gives a (multiplication preserving) bijection from (Z/NZ)× to (Z/n1Z)×× (Z/n2Z)×× · · · ×
(Z/nrZ)×.

Corollary 3. If n1, n2, . . . , nr ∈ N are pairwise relatively prime, then

ϕ(n1n2 · · ·nr) = ϕ(n1)ϕ(n2) · · ·ϕ(nr),

i.e. ϕ is multiplicative.

Remark 3. Given an arithmetic function f : N→ C, one usually says it is multiplicative if
f(mn) = f(m)f(n) whenever (m,n) = 1. It is not too hard to show, however, that this is
equivalent to the property stated for ϕ above. H

Corollary 4. Let n ∈ N and write n as a product of powers of distinct primes:

n = pm1
1 pm2

2 · · · pmr
r , pi distinct primes, mi ∈ N.

Then:

1. (Z/nZ)× is isomorphic to (Z/pm1
1 Z)× × (Z/pm2

2 Z)× × · · · × (Z/pmr
r Z)×; 1

2. ϕ(n) = ϕ(pm1
1 )ϕ(pm2

2 ) · · ·ϕ(pmr
r ).

Proof. Take ni = pmi
i in the previous two corollaries.

1Two groups are said to be isomorphic if there is an operation preserving bijection between them.
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Corollary 4 was the true goal of introducing the Chinese remainder theorem. It reduces
the study of the structure of the unit group (Z/nZ)× for arbitrary n to the study of unit
groups of the form (Z/pmZ)× where p is prime. We’ll return to this topic later. The corollary
also allows us to determine an explicit formula for ϕ(n) in terms of the prime factorization
of n, as we will now see.

Lemma 3. Let p be a prime and m ∈ N. Then

ϕ(pm) = pm − pm−1 = pm−1(p− 1) = pm
(

1− 1

p

)
.

Proof. To count (Z/pmZ)× we will instead count its complement in Z/pmZ and subtract that
number from pm. The integers from 1 to pm that are not relatively prime to pm are precisely
the multiples of p in that range. So we need to count the positive k that satisfy kp ≤ pm.
But if we divide both sides by p we immediately obtain 1 ≤ k ≤ pm−1. So there are exactly
pm−1 multiples of p less than or equal to pm. That leaves pm− pm−1 positive integers in that
range that are relatively prime to pm. Hence ϕ(pm) = pm − pm−1.

Remark 4. Note that if p = 2 then ϕ(2m) = 2m−1(2− 1) = 2m−1. In other words, exactly
half of the elements of Z/2mZ are units. This is easily explained. In order to be relatively
prime to 2m an integer need only be odd, and exactly half of the positive integers up to 2m

are odd. H

Theorem 3. Let n ∈ N and write n as a product of powers of distinct primes:

n = pm1
1 pm2

2 · · · pmr
r , pi distinct primes, mi ∈ N.

Then

ϕ(n) = pm1−1
1 (p1 − 1)pm−12 (p2 − 1) · · · pmr−1

r (pr − 1) = n
∏
p|n

(
1− 1

p

)
.

Proof. This follows immediately from the Lemma and the multiplicativity of ϕ.

Example 5.

• ϕ(100) = ϕ(52)ϕ(22) = 5(5− 1) · 2 = 40.

• ϕ(230) = ϕ(23)ϕ(2)ϕ(5) = 22 · 1 · 4 = 88.

• ϕ(572) = ϕ(22)ϕ(11)ϕ(13) = 2 · 10 · 12 = 240.

• ϕ(902016) = ϕ(27)ϕ(35)ϕ(29) = 26 · 34(3− 1) · 28 = 290304.

�

Example 6. Find the remainder when 32049 is divided by 68
We see that ϕ(68) = ϕ(22)ϕ(17) = 2 · 16 = 32 and 2049 ≡ 1(mod 32). Hence, by Euler’s

theorem,
32049 ≡ 31 ≡ 3 (mod 68),

and the remainder is 3 . �
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