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We have seen that every natural number possesses a factorization into prime numbers.
In order to prove that every such factorization is unique (up to the order of the factors) we
need to introduce the notion of greatest common divisor.

Definition 1. Let a, b ∈ Z. We define their greatest common divisor (GCD) to be

gcd(a, b) = (a, b) = max{c ∈ N | c|a and c|b}

provided a and b aren’t both zero. We define gcd(0, 0) = (0, 0) = 0. N

Remark 1.

• Note that since the set defining (a, b) is bounded by max{|a|, |b|}, the GCD always
exists.

• For any a ∈ Z, (a, 0) = |a|.

• If p ∈ N is prime, then

(a, p) =

{
p if p|a,
1 if p - a.

• If (a, b) = 1 we say that a and b are relatively prime.

• Clearly (a, b) = (b, a).

• (8, 76) = 4, (91, 70) = 7, (72, 84) = 12, (54, 39) = 3, (16, 69) = 1

H

The fundamental property of the GCD that we will need is the following.

Lemma 1. Let a, b ∈ Z. For any n ∈ Z

(a, b) = (a, b + na).

Proof. If a = b = 0, there is nothing to prove. Otherwise it suffices to prove that

{c ∈ N | c|a and c|b}︸ ︷︷ ︸
A

= {c ∈ N | c|a and c|b + na}︸ ︷︷ ︸
B

.

Let c ∈ A. Then c|a and c|b, so that c|b + na by HW. Hence c ∈ B and A ⊆ B. Now let
c ∈ B. Since c|a and c|b + na, c|(b + na) + (−n)a = b by HW again. So c ∈ A and B ⊆ A.
Therefore A = B and the proof is complete.
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Remark 2. The lemma shows that, as a function of b, (a, b) is periodic with period a. H

We will now develop an efficient algorithm for computing (a, b). Our main tool will be
the Division Algorithm, which we now recall.

Theorem 1 (The Division Algorithm). Let a, b ∈ Z with a 6= 0. Then there exist unique
q, r ∈ Z so that

b = qa + r and 0 ≤ r < |a|.

Sketch. The set
N0 ∩ {b− qa | q ∈ Z}

is nonempty so it has a least element r by the Well Ordering Principal. One can show that
r ≥ |a| contradicts minimality. Hence 0 ≤ r < |a| and b−qa = r (or b = qa+r), establishing
existence. If we also have b = q′a+r′ with 0 ≤ r′ < |a|, then (q′−q)a = r−r′ so that a|r−r′.
But |r − r′| < |a| so we must have r − r′ = 0 and hence q = q′. This proves uniqueness.

Remark 3. One can also give an inductive proof of the Division Algorithm which shows
that the familiar process of long division yields q, the quotient and r, the remainder. H

Corollary 1. Let a, b ∈ Z with a 6= 0. Write b = qa+ r as in the Division Algorithm. Then

(a, b) = (r, a).

Proof. According to the lemma we have

(a, b) = (a, qa + r) = (a, r) = (r, a).

Given nonzero a, b ∈ Z, consider the following sequence of divisions:

b = q1a + r1, 0 ≤ r1 < |a|,
a = q2r1 + r2, 0 ≤ r2 < r1,

r1 = q3r2 + r3, 0 ≤ r3 < r2,

r2 = q4r3 + r4, 0 ≤ r4 < r3,

...

rk−1 = qk+1rk + rk+1, 0 ≤ rk+1 < rk, (1)

...

rn−1 = qn+1rn, rn+1 = 0.

Because rk ∈ N0 and r1 > r2 > r3 > · · · , we are guaranteed that eventually rk = 0. Notice
that according to Corollary 1

(a, b) = (r1, a) = (r2, r1) = (r3, r2) = · · · = (rn+1, rn) = (0, rn) = rn,

i.e. the last nonzero remainder is equal to (a, b). So we can compute (a, b) through repeated
application of the Division Algorithm. This process is known as the Euclidean Algorithm.
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Example 1. Let’s use the Euclidean Algorithm to compute (336, 726). We have

726 = 2 · 336 + 54,

336 = 6 · 54 + 12,

54 = 4 · 12 + 6,

12 = 2 · 6.

The last nonzero remainder is 6. Hence

(336, 726) = 6.

�

We can reformulate the Euclidean Algorithm as a two-dimensional linear recursion. Let

x0 =

(
b
a

)
,x1 =

(
a
r1

)
,xk =

(
rk−1
rk

)
for k ≥ 2

and

Qk =

(
0 1
1 −qk

)
for k ≥ 1.

Notice that according to equation (1)

xk+1 =

(
rk
rk+1

)
=

(
rk

rk−1 − qk+1rk

)
=

(
0 1
1 −qk+1

)(
rk−1
rk

)
= Qk+1xk

for all k ≥ 0. We therefore have

xn = Qnxn−1

= QnQn−1xn−2
...

= QnQn−1 · · ·Q1x0.

Equivalently

QnQn−1 · · ·Q1

(
b
a

)
=

(
∗

(a, b)

)
. (2)

If we write

QnQn−1 · · ·Q1 =

(
∗ ∗
s r

)
,

then equation (2) implies that (a, b) = ra + sb. We have just proven the following result.

Theorem 2 (Bézout’s Lemma). Let a, b ∈ Z. There exist r, s ∈ Z so that

(a, b) = ra + sb.

Remark 4.

• Note that the Euclidean Algorithm produces the matrices Qk thereby allowing us to
compute r and s in Bézout’s Lemma explicitly. Although the mere existence of r and
s is sufficient for our purposes now, later on we will need to know how to actually find
them, and the technique above is the most efficient way to do so.
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• On the other hand, the “standard” proof of Bézout’s Lemma presented in most text-
books is nonconstructive. One argues that the least element of

N ∩ {ra + sb | r, s ∈ Z}

is (a, b). This proves that (a, b) = ra + sb for some r, s ∈ Z, but gives no indication as
to how such a pair might be found.

• r and s are not unique. For example, one can replace a given pair r, s with r + mb,
s−ma for any m ∈ Z.

H

Example 2. In the course of applying the Euclidean Algorithm to the computation of
(336, 726) we found that q1 = 2, q2 = 6 and q3 = 4. Hence

Q1 =

(
0 1
1 −2

)
, Q2 =

(
0 1
1 −6

)
, Q3 =

(
0 1
1 −4

)
so that

Q3Q2Q1 =

(
0 1
1 −4

)(
0 1
1 −6

)(
0 1
1 −2

)
=

(
−6 13
25 −54

)
.

Hence we can take r = −54 and s = 25 in Bézout’s Lemma. That is

−54 · 336 + 25 · 726 = (336, 726) = 6.

�

Note that in general we don’t require the final line of the Euclidean Algorithm when
computing r and s in Bézout’s Lemma via the procedure above. We now turn to our first
application of Bézout’s Lemma.

Lemma 2. Let a, b, c ∈ Z. If a|bc and (a, b) = 1, then a|c.

Proof. Write 1 = ra + sb and bc = ad. Then c = rac + sbc = rac + sad = a(rc + sd) so that
a|c.

Corollary 2 (Euclid’s Lemma). Let p be a prime number and a, b ∈ Z. If p|ab, then p|a or
p|b.

Proof. Since p is prime, if p - a then (a, p) = 1. Then by the lemma, p|b.

Corollary 3 (Extended Euclid’s Lemma). Let p be a prime number and a1, a2, . . . , ak ∈ Z.
If p|a1a2 · · · ak, then p|ai for some i.

Proof. This is a straightforward induction using Euclid’s Lemma as the base case and is left
as an exercise.

Lemma 3. Let p, q1, q2, . . . , qk be prime numbers. If p|q1q2 · · · qk, then p = qi for some i.

Proof. By the Extended Euclid’s Lemma, p|qi for some i. Since p 6= 1 and qi is prime, this
implies p = qi.
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Theorem 3 (Uniqueness of Prime Factorizations). Suppose that p1, p2, . . . , pk, q1, q2, . . . q`
are prime numbers such that

p1p2 · · · pk = q1q2 · · · q`.
Then k = ` and, after reordering if necessary, pi = qi for all i.

Proof. Without loss of generality we may assume that k ≤ `. Since p1|q1q2 · · · q`, Lemma 3
implies that p1 = qi for some i. After reordering and relabeling, we may assume that p1 = q1.
Cancelling p1 = q1 from both sides yields

p2 · · · pk = q2 · · · q`.

Repeating the preceding argument with p2, then p3, etc. we find that, after relabelling, pi = qi
for all i ≤ k, and if k > `, we arrive at the equation

1 = qk+1 · · · q`.

Since this is clearly impossible, we must have k = ` and the theorem is proven.
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