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The group-theoretic structure of (Z/nZ)× is well-known. We have seen that if N =
pn1

1 · · · pnr
r with pi distinct primes and ni ∈ N, then the ring isomorphism ρ of the Chinese

remainder theorem provides a multiplication preserving bijection

(Z/nZ)× → (Z/pn1
1 Z)× × · · · (Z/pnr

r Z)×

(below we will define such a function to be a group ismorphism). This reduces the study
of the general unit group (Z/nZ)× to understanding the unit group (Z/pnZ)× with prime
power modulus. It turns out that the structure of these groups depends on whether or not
p = 2. Moreover, when p is odd, the proof of the main structure theorem on (Z/pnZ)× will
be broken down into the cases n = 1, n = 2 and n ≥ 3 separately. Before we can get into
any of this, however, we need some preliminary results.

1 Gauss’ Result on ϕ(n)

Given n ∈ N and a positive d|n let

Sd = {1 ≤ a ≤ n | (a, n) = d}

and
Td =

{
k
n

d
| 1 ≤ k ≤ d, (k, d) = 1

}
.

The sets Sd partition the integers from 1 to n according to their GCD with n.
We claim that

Sn/d = Td. (1)

First note that any element k n
d
∈ Td satisfies(

k
n

d
, n
)

=
(
k
n

d
, d
n

d

)
=
n

d
(k, d) =

n

d

and hence belongs to Sn/d. Conversely, for a ∈ Sn/d we have

n

d
= (a, n) =

(
a

n/d

n

d
, d
n

d

)
=
n

d

(
a

n/d
, d

)
⇒

(
a

n/d
, d

)
= 1,

and hence a = a
n/d

n
d
∈ Td.

We apply (1) to prove the following essential result on Euler’s ϕ function.
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Corollary 1 (Gauss). For any n ∈ N,∑
d|n

ϕ(d) = n,

the sum running over the positive divisors of n.

Proof. As d runs through the (positive) divisors of n, so does n/d. Hence,

{1 ≤ a ≤ n} =
⋃
d|n

Sd =
⋃
d|n

Sn/d

since (a, n) takes on the value of each divisor of n at least once. Since the sets Sd are pairwise
disjoint (no integer has more than one GCD with n), taking the size of each of the sets above,
and using equation (1), yields

n =
∑
d|n

|Sn/d| =
∑
d|n

|Td| =
∑
d|n

ϕ(d).

Example 1. The (positive) divisors of 20 are 1, 2, 4, 5, 10 and 20. We see that∑
d|20

ϕ(d) = ϕ(1) + ϕ(2) + ϕ(4) + ϕ(5) + ϕ(10) + ϕ(20) = 1 + 1 + 2 + 4 + 4 + 8 = 20,

as claimed. �

2 Cyclic Groups and Primitive Roots

Definition 1.Let G be a group and g ∈ G. The set

〈g〉 = {gn |n ∈ Z}

is called the cyclic subgroup (of G) generated by g. If G = 〈g〉 for some g ∈ G we say that
G is cyclic. N

Remark 1. The set 〈g〉 is itself a group under the binary operation on G. Hence the use of
the term subgroup. H

Definition 2. If (Z/nZ)× is cyclic with generator a+ nZ, we say that a is a primitive root
modulo n. N

Remark 2. Although entirely standard, we find the term primitive root to be somewhat
archaic. We have introduced it in the interest of cultural literacy, but will rarely use it,
preferring the term generator instead. H
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Example 2.

• (Z,+) is cyclic since it is generated by ±1, e.g. n = n · 1 for and n ∈ Z.

• (Z/nZ,+) is cyclic since it is generated by 1 + nZ, i.e. a + nZ = a(1 + nZ) for any
a ∈ Z.

• (Z/8Z)× is not cyclic since for any x+ 8Z ∈ (Z/8Z)×,

〈x+ 8Z〉 = {1 + 8Z, x+ 8Z} 6= (Z/8Z)×

since x2 ≡ 1(mod 8) for all odd x. Therefore there does not exist a primitive root
modulo 8.

• Every cyclic group is abelian since gmgn = gm+n = gn+m = gngm for all m,n ∈ Z.

�

Given an element g ∈ G, the size of 〈g〉 is intimately related to ord(g).

Lemma 1. Let G be a group and g ∈ G. Then |〈g〉| = ord(g).

Proof. First assume ord(g) = ∞. Then no two powers of g are equal, for otherwise we’d
have gi = gj with i < j and hence gj−i = e with j − i > 0, implying ord(g) <∞. Thus 〈g〉
is infinite (it can be bijected with Z), and the result follows.1

Now suppose ord(g) = n ∈ N. The group elements e, g, g2, . . . , gn−1 must be distinct
since otherwise, as above, we end up with gk = e for some 1 ≤ k ≤ n − 1, contradicting
the minimality of n = ord(g). Moreover, given any m ∈ Z we can write m = qn + r with
0 ≤ r ≤ n− 1 so that

gm = (gn)qgr = eqgr = gr ∈ {e, g, g2, . . . , gn−1}.
It follows that 〈g〉 = {e, g, g2, . . . , gn−1}, and since these elements are distinct, |〈g〉| = n =
ord(g).

Remark 3.
If G is a finite group and g ∈ G, then G is cyclic and generated by g if and only if

ord(g) = |G|. We will tacitly assume this fact from now on.
H

Lemma 2 (Generators of a Cyclic Group). Let G = 〈g〉 be a finite cyclic group of order n.
Then G = 〈h〉 if and only if

h ∈ {ga | (a, n) = 1}.
Proof. Suppose that h = ga with (a, n) = 1. Then clearly 〈h〉 ⊆ 〈g〉 as every power of h is a
power of g. For the reverse containment, use Bézout’s lemma to write ra + sn = 1. Then
hr = gar = g1−sn = g · (gn)−s = g · e = g. Hence every power of g is a power of h and so
〈g〉 ⊆ 〈h〉 as well.

Now suppose that 〈g〉 = 〈h〉. Then h = ga for some a ∈ Z. Since g ∈ 〈h〉, g = hr = gra

for some r ∈ Z. Hence g1−ra = e so that n = ord(g) (by the previous lemma) divides 1− ra.
This means that ra ≡ 1(mod n) so that a in a unit modulo n and hence (a, n) = 1.

1This is the reason we say that an element that doesn’t have an order has infinite order: so that this lemma will hold in this
case as well.
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Corollary 2. Let G be a finite cyclic group of order n. Then G has exactly ϕ(n) generators.

Proof. Write G = 〈g〉 so that the distinct elements of G are e, g, g2, . . . , gn−1. Then according
to Lemma 2 the number of generators of G is

#{1 ≤ a ≤ n− 1 | (a, n) = 1} = ϕ(n).

Example 3.

• The only generators of (Z/nZ,+) are a(1 + nZ) = a + nZ where (a, n) = 1, i.e. the
elements of (Z/nZ)×.

• One can easily show that 2 + 11Z generates (Z/11Z)×. Since this group has order
10, the only other generators are (2 + 11Z)3 = 8 + 11/Z, (2 + 11/Z)7 = 7 + 11Z and
(2 + 11/Z)9 = 6 + 11/Z.

�

3 The Structure of (Z/pZ)×

The structure of prime power modulus unit groups begins simply with the case of prime
modulus. Recall that when p is a prime, Z/pZ is a field, i.e. a commutative ring in which
every nonzero element is a unit. We will be interested in counting the number of elements in
(Z/pZ)× of each allowable order d|p−1. Because we can’t determine these elements directly,
we will instead interpret them as solutions of the polynomial equation xd − 1 = 0, which
turns the problem into counting the roots of special polynomials. Since we are working in a
field, there is a natural limit to the number of roots a polynomial can have. To deduce this
limit we first prove the following lemma.

Lemma 3. Let F be a field and let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ai ∈ F, an 6= 0

be a polynomial over F of degree n. If r ∈ F and f(r) = 0, then

f(x) = (x− r)g(x)

where g(x) is a polynomial over F of degree n− 1.

Proof. Replace x by (x− r) + r in f(x), apply the binomial theorem to each summand and
collect terms with common powers of x− r. Since f(r) = 0 this yields

f(x) = an(x− r + r)n + an−1(x− r + r)n−1 + · · ·+ a1(x− r + r) + a0

= an(x− r)n + bn−1(x− r)n−1 + · · ·+ b1(x− r) + f(r)

= (x− r)
(
an(x− r)n−1 + bn−1(x− r)n−2 + · · ·+ b1

)
+ 0 (bi ∈ F )

= (x− r)
(
an(x− r)n−1 + bn−1(x− r)n−2 + · · ·+ b1

)
= (x− r)

(
anx

n−1 + cn−2x
n−2 + · · ·+ c0

)︸ ︷︷ ︸
g(x)

(ci ∈ F ),

where in the final line we have again used the binomial theorem to expand each power of
x− r.
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Theorem 1 (Lagrange). Let F be a field and let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ai ∈ F, an 6= 0

be a polynomial over F of degree n. Then the equation f(x) = 0 has at most n solutions in
F .

Proof. We induct on n. When n = 1 we have the equation

a1x+ a0 = 0, a0, a1 ∈ F, a1 6= 0,

which has the unique solution x = −a−1
1 a0 ∈ F , since F is a field.

Now assume the result holds for all polynomials over F of some degree n ≥ 1. Consider

f(x) = an+1x
n+1 + anx

n + · · ·+ a1x+ a0, ai ∈ F, an+1 6= 0.

If f(x) = 0 has no solutions in F there is nothing to prove, so assume that f(r) = 0 for
some r ∈ F . According to the lemma, f(x) = (x − r)g(x) for some polynomial g(x) over
F of degree n. Since F is a field, we find that if f(s) = 0 for some s ∈ F , s 6= r, then
g(s) = 0. Since g(x) has degree n, by our inductive hypothesis there are at most n possible
values for s. Hence f(x) = 0 has at most n+ 1 solutions, and we have established the next
case. Induction gives us the result.

Lemma 4. Let p be a prime. For each d|p−1, the equation xd−1 = 0 has exactly d solutions
in Z/pZ.

Proof. By Fermat’s little theorem the equation xp−1 − 1 = 0 has exactly p − 1 solutions in
Z/pZ, namely the elements of (Z/pZ)× (0+pZ is certainly not a solution). Write p−1 = kd
so that

xp−1 − 1 = xdk − 1 = (xd − 1)(xd(k−1) + xd(k−2) + · · ·+ xd + 1).

Then xp−1− 1 = 0 if and only if xd− 1 = 0 or xd(k−1) +xd(k−2) + · · ·+xd + 1 = 0, since Z/pZ
is a field. Lagrange’s theorem tells us that the number N1 of solutions to xd(k−1) + xd(k−2) +
· · · + xd + 1 = 0 in Z/pZ satisfies N1 ≤ dk − d = p − 1 − d. Likewise, N2, the number of
solutions to xd − 1 = 0 in Z/pZ, must satisfy N2 ≤ p− 1− (p− 1− d) = d. As xp−1 − 1 = 0
has exactly p− 1 solutions we therefore have2

p− 1 ≤ N1 +N2 = (p− 1− d) + d = p− 1

and hence we must actually have N1 = p− 1− d and N2 = d. The latter equality gives the
statement of the lemma.

Remark 4.

• Note that if a+ pZ solves xd− 1 = 0, then we actually have a+ pZ ∈ (Z/pZ)×. Indeed,
in this case (a+ pZ)−1 = (a+ pZ)d−1.

• In view of the remark above, we see that for d|p−1, the solutions of xd−1 = 0 in Z/pZ
are the elements of (Z/pZ)× with order dividing d.

2We do not know a priori that the two factors of xp−1 − 1 don’t share roots.
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• The proof of the preceding lemma allows us to conclude that xd(k−1) + xd(k−2) + · · · +
xd + 1 = 0 (where k is the divisor of p − 1 complementary to d) has exactly p − 1 − d
solutions in Z/pZ and that these must be distinct from the solutions to xd − 1 = 0.

H

Lemma 5. Let p be a prime, d|p − 1. The number of elements of (Z/pZ)× of order d is
either 0 or ϕ(d).3

Proof. Suppose there exists an a + pZ of order d in (Z/pZ)×. Let H denote the subgroup
it generates. Then H contains d elements, each of which is a solution to xd − 1 = 0. Given
that any other element of order d would generate a subgroup with the same property, and
that xd − 1 = 0 has only d solutions, it must be that H contains every element of order d.
Now b + pZ ∈ H has order d if and only if H = 〈b + pZ〉 and according to the corollary to
Lemma 2, H has exactly ϕ(d) generators. This is what we needed to show.

We are finally ready to determine the structure of (Z/pZ)×.

Theorem 2. Let p be a prime. For every d|p−1, there are exactly ϕ(d) elements of (Z/pZ)×

of order d. In particular, (Z/pZ)× is cyclic.

Proof. For each d|p − 1 let γ(d) denote the number of elements of (Z/pZ)× of order d.
According to Lemma 5, γ(d) ≤ ϕ(d) for all d. Moreover, since every element has some order
dividing p− 1, and by Gauss’ result,

p− 1 =
∑
d|p−1

γ(d) =
∑
d|p−1

ϕ(d).

This equality implies that, in fact, γ(d) = ϕ(d) for all d, as claimed. In particular, γ(p−1) =
ϕ(p− 1) ≥ 1 so that elements of order p− 1 = |(Z/pZ)×| exist, i.e. (Z/pZ)× is cyclic.

Example 4.

p Generators of (Z/pZ)×

3 2 + 3Z
5 2 + 5Z, 3 + 5Z
7 3 + 7Z, 5 + 7Z
11 2 + 11Z, 6 + 11Z, 7 + 11Z, 8 + 11Z
13 2 + 13Z, 6 + 13Z, 7 + 13Z , 11 + 13Z
17 3 + 17Z, 5 + 17Z, 6 + 17Z, 7 + 17Z, 10 + 17Z, 11 + 17Z, 12 + 17Z, 14 + 17Z
19 2 + 19Z, 3 + 19Z, 10 + 19Z, 13 + 19Z, 14 + 19Z, 15 + 19Z

�

Remark 5.

• We’ve given an indirect (nonconstructive) proof of the fact that (Z/pZ)× is cyclic be-
cause we have to: there’s no (known) way to actually find a generator of (Z/pZ)×

without actually knowing p. Once we have one generator it is easy to produce them all
via Lemma 2, but it’s nailing down the existence of that first generator that’s so tricky.

3We will soon see that 0 never occurs, but we need this intermediate result in order to establish that stronger fact.
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• Artin’s (primitive root) conjecture states that if a 6= ±1,�, then the set of primes p
for which a + pZ generates (Z/pZ)× has positive asymptotic density in the set of all
primes. In particular, there are infinitely many such primes. However, there is not a
single value of a for which this result has been established. Hooley proved that Artin’s
conjecture is a consequence of the Generalized Riemann Hypothesis for zeta functions
of number fields, another conjectural result. There are partial results, however, along
the lines of Artin’s conjecture that have been proven. It is a consequence of a result of
Heath-Brown, for example, that at least one of 2, 3 or 5 is a primitive root for infinitely
many primes.

• The argument we’ve used to establish Theorem 2 is easily generalized to any finite
subgroup of the multiplicative group F× of an arbitrary field F . That is, if F is a field
and G is a finite subgroup of F×, then G is cyclic. Again, the proof is nonconstructive:
it does not provide a generator, but merely establishes that one must exist.

H

4 The Structure of (Z/p2Z)×

We will deduce the structure of (Z/p2Z)× from that of (Z/pZ)×. The two groups are naturally
connected by a homomorphism, a group-theoretic tool we will take advantage of to simplify
our presentation.

Definition 3. Let G, H be groups. A function f : G → H is called a homomorphism pro-
vided f(ab) = f(a)f(b) for all a, b ∈ G. A bijective homomorphism is called an isomorphism.
N

Example 5.

• It is not difficult to show that if f is a homomorphism then f(eG) = eH and f(an) =
f(a)n for all n ∈ Z.

• If m,n ∈ N and m|n, we have seen that the reduction map

r :(Z/nZ)× → (Z/mZ)×

a+ nZ 7→ a+mZ

preserves multiplication of congruence classes, hence is a homomorphism of groups.

• If n1, n2, . . . , nr ∈ N are pairwise relatively prime and N = n1n2 · · ·nr, we have seen
that

ρ :(Z/NZ)× → (Z/n1Z)× × (Z/n2Z)× × · · · × (Z/nrZ)×

a+NZ 7→ (a+ n1Z, a+ n2Z, . . . , a+ nrZ)

is a multiplication preserving bijection, hence is an isomorphism of groups.

• If G = 〈g〉 is a cyclic group of order n, it is not difficult to show that the map c :
Z/nZ → G given by a + nZ 7→ ga is a well-defined (additive to multiplicative) group
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homomorphism. Since a can take on any value in Z, c is clearly surjective, so by Lemma
6 and the pigeon-hole principle it is an isomorphism.

Similarly, if ord(g) = ∞, then the map ĉ : Z → G defined by a 7→ ga is a surjective
homomorphism. The proof of Lemma 6 shows that ĉ is also injective and is therefore
an isomorphism.

The moral is that every cyclic group is isomorphic to one of Z/nZ or Z, i.e. up to
relabelling these are the only cyclic groups!

�

Our primary application of group homomorphisms will be through the following result.

Lemma 6. Let f : G → H be a homomorphism of groups. If a ∈ G has finite order, then
ord(f(a))| ord(a).

Proof. Let n = ord(a). Then an = eG so that

eH = f(eG) = f(an) = f(a)n ⇒ ord(f(a))|n.

We are now ready for the main result of this section.

Theorem 3. Let p be a prime, n ∈ N. Then (Z/p2Z)× is cyclic.

Proof. Let g + pZ be a generator for (Z/pZ)×. We claim that either g + p2Z or g + p+ p2Z
generates (Z/p2Z)×. Let r : (Z/p2Z)× → (Z/pZ)× denote the reduction map. Since r is a
homomorphism and r(g+ p2Z) = r(g+ p+ p2Z) = g+ pZ, according to Lemma 6 the orders
of g + p2Z and g + p + p2Z are both divisible by p − 1. Since|(Z/p2Z)×| = p(p − 1), their
orders are therefore either p− 1 or p(p− 1).

Assume that g + p2Z does not generate (Z/p2Z)×. Then according to the preceding
paragraph it must have order p − 1, and to show that g + p + p2Z is a generator it suffices
to show that (g + p + p2Z)p−1 6= 1 + p2Z, i.e. that (g + p)p−1 6≡ 1(mod p2). If we apply the
binomial theorem we obtain

(g + p)p−1 = gp−1 + (p− 1)gp−2p+ kp2

≡ 1 + (p− 1)gp−2p (mod p2),

since g+p2Z has order p−1. This final quantity is ≡ 1(mod p2) if and only if p2|(p−1)gp−2p
or p|(p− 1)gp−2. But (p, p− 1) = (p, g) = 1, so this cannot occur. The proof is complete.

Example 6. The first example of a generator of (Z/pZ)× that does not generate (Z/p2Z)×

occurs when p = 29 and g = 14 + 29Z: g has order 28 in both groups. According to the
proof, this means that 14 + 29 + 292Z = 43 + 292Z generates (Z/292Z)× instead. �
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5 The Structure of (Z/pnZ)× for Odd p

The passage from (Z/p2Z)× to (Z/pnZ)× will be achieved via the following result.

Lemma 7. Let p be an odd prime, n ∈ N. If (x, p) = 1, then xp ≡ 1(mod pn+1) if and only
if x ≡ 1(mod pn).

Proof. Suppose that x ≡ 1(mod pn). Then pn|x − 1. Furthermore, p|x − 1 implies x ≡ 1
(mod p) so that

xp−1 + xp−2 + · · ·+ x+ 1 ≡ 1 + 1 + · · ·+ 1 ≡ p ≡ 0 (mod p)

so that p|xp−1 + xp−2 + · · ·+ x+ 1. Therefore

pn+1|(x− 1)(xp−1 + xp−2 + · · ·+ x+ 1) = xp − 1 ⇒ xp ≡ 1 (mod pn+1).

We prove the converse by induction on n. When n = 1 suppose we have xp ≡ 1(mod p2).
By Fermat’s theorem we have

xp = x · xp−1 = x(1 + kp) = 1 + `p2 ⇒ x ≡ 1 (mod p)

as claimed. Now suppose we have proven the result for some n ∈ N and assume xp ≡ 1
(mod pn+2). Then xp ≡ 1(mod pn+1) so that x ≡ 1(mod pn) by the inductive hypothesis.
Write x = 1 + kpn so that

xp = (1 + kpn)p = 1 + pkpn +

p∑
j=2

(
p

j

)
kjpnj = 1 + pkpn + `p2n+1 + kppnp,

since all the middle binomial coefficients
(
p
j

)
are divisible by p. Since 2n + 1 ≥ n + 2 and

np ≥ n+ 2 (as p ≥ 3), we find that

1 ≡ xp ≡ 1 + kpn+1 (mod pn+2)

so that
pn+2|(1 + kpn+1)− 1 = kpn+1 ⇒ p|k.

Since x = 1 + kpn, it follows that x ≡ 1(mod pn+1). Induction completes the proof.

Remark 6. This result is false if p = 2, and this is what prevents (Z/2nZ)× from being
cyclic for n ≥ 3. For example, x2 ≡ 1(mod 8) for all odd x, but it is certainly not true that
x ≡ 1(mod 4) for all odd x. H

Theorem 4. Let p be an odd prime, n ∈ N. Then (Z/pnZ)× is cyclic.

Proof. We induct on n ≥ 2, the base case having been established in the preceding section.
Now suppose we have proven that (Z/pnZ)× is cyclic for some n ≥ 2 with generator g+pnZ.
We claim that g+pn+1Z generates (Z/pn+1Z)×. Letting r : (Z/pn+1Z)× → (Z/pnZ)× denote
the reduction map, we know from Lemma 6 that pn−1(p− 1) divides the order of g+ pn+1Z.

So to show it is a generator of (Z/pn+1Z)× it suffices to show that (g + pn+ 1Z)p
n−1(p−1) 6=

1 + pn+1Z, i.e. that gp
n−1(p−1) 6≡ 1(mod pn+1).

Assume that this is not the case. Then according to Lemma 7, gp
n−2(p−1) ≡ 1(mod pn).

But this contradicts the fact that g+ pnZ has order pn−1(p− 1) in (Z/pnZ)×. Therefore g+
pn+ 1Z generates (Z/pn+1Z)× as claimed, and the theorem is established by induction.
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Example 7.

• We have seen that 14+29Z generates (Z/29Z)× and that 43+292Z generates (Z/292Z)×.
According to the proof of the preceding theorem, 43 + 29nZ generates 43 + 29nZ for all
n ≥ 3.

• 2 + 5Z generates (Z/5Z)×. According to the proof of Theorem 3, 2 + 25Z either has
order 5 − 1 = 4 or order 5(5 − 1) = 20 in (Z/25Z)×. Since 24 = 16 6≡ 1(mod 25), we
must be in the latter situation. Hence 2 + 5nZ generates (Z/5nZ)× for all n ≥ 1.

�

6 The Structure of (Z/2nZ)×

When n = 1, 2, the structure of (Z/2nZ)× is easy to determine. When n = 1 we simply
get the trivial group {1 + 2Z}, and when n = 2 we get the cyclic group with two elements
〈3 + 4Z〉. When n ≥ 3 matters are decidedly more subtle. For example, we have the next
elementary result, which immediately shows that (Z/2nZ)× is never cyclic for n ≥ 3.

Lemma 8. For odd x ∈ Z and n ≥ 3, x2n−2 ≡ 1(mod 2n).

Proof. By induction on n ≥ 3. When n = 3 every odd number satisfies x ≡ 1, 3, 5, 7(mod 8).
Squaring each of these we find that x2 ≡ 1(mod 8) in every case, as claimed.

Now assume the result holds for some n ≥ 3. If x is odd we have

x2n−2

= 1 + k2n ⇒ x2n−1

= (x2n−2

)2 = (1 + k2n)2 = 1 + k2n+1 + k222n ≡ 1 (mod 2n+1).

The proof is finished by induction.

Lemma 8 shows that for n ≥ 3 every element of (Z/2nZ)× has order at most 2n−2, while
(Z/2nZ)× has order ϕ(2n) = 2n−1, which justifies the claim made just prior to the statement
of the lemma. It turns out that the bound 2n−2 on the order of elements of (Z/2nZ)× is
sharp: there are, indeed, elements whose orders achieve this size. To prove this we require
the next fact.

Lemma 9. For n ∈ N the exact power of 2 dividing 52n − 1 is 2n+2.

Proof. We induct on n. When n = 1, 52n − 1 = 24 which is exactly divisible by 8 = 23, so
the result holds. Now assume the result for some n ≥ 1 and consider

52n+1 − 1 = (52n)2 − 1 = (52n − 1)(52n + 1). (2)

By hypothesis, 2n+2 exactly divides 52n − 1. Since 52n + 1 is even, it’s certainly divisible by
2. But it isn’t divisible by 4 since

52n + 1 ≡ 1 + 1 ≡ 2 6≡ 0 (mod 4).

So 52n + 1 is exactly divisible by 2. Hence the product (2) is exactly divisible by 2n+3, and
the proof is completed by induction.

Lemma 10. Let n ≥ 3. Then 5 + 2nZ has order 2n−2 in (Z/2nZ)×.
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Proof. According to Lemma 8, the order of 5 + 2nZ in (Z/2nZ)× divides 2n−2. So it suffices

to show (5 + 2nZ)2n−3 6= 1 + 2nZ, that is 52n−3 6≡ 1(mod 2n). If this were not the case,

we’d have 2n|52n−3 − 1. But according to Lemma 9 this is impossible, which proves what we
need.

Lemma 10 shows that, for n ≥ 3, the subgroup 〈5 + 2nZ〉 of (Z/2nZ)× has order 2n−2 and
therefore accounts for exactly half of the larger group’s elements. To get the other half we
need one additional lemma.

Lemma 11. If n ≥ 2, then 5m 6≡ −1(mod 2n) for any m ∈ N.

Proof. Suppose otherwise. Then 2n|5m+1 for some m ∈ N. Since n ≥ 2, this implies 4|5m+1
or

0 ≡ 5m + 1 ≡ 1 + 1 ≡ 2 (mod 4),

which is impossible.

Theorem 5. Let n ≥ 3. Then (Z/2nZ)× is isomorphic to 〈−1 + 2nZ〉× 〈5 + 2nZ〉. The first
factor has order 2 and the second has order 2n−2.

Proof. Define f : 〈−1 + 2nZ〉 × 〈5 + 2nZ〉 → (Z/2nZ)× by (ε+ 2nZ, 5k + 2nZ) 7→ ε5k + 2nZ.
It is easy to see that this is a homomorphism. Since both the domain and codomain of f
have size 2n−1, to check that f is a bijection it suffices to show that it is injective.

So suppose that ε5k + 2nZ = δ5` + 2nZ for some ε, δ ∈ {±1} and k ≤ `. Then ε5k ≡ δ5`

(mod 2n) so that 5`−k ≡ εδ (mod 2n). By the preceding lemma, ε = δ and hence 5` ≡ 5k

(mod 2n). Thus (ε+ 2nZ, 5k + 2nZ) = (δ+ 2nZ, 5` + 2nZ), proving that f is an injection.

Remark 7. According to Lagrange’s theorem from algebra, the size of a subgroup of a finite
group G must divide |G|. It follows that no proper subgroup of a finite group G can have
size larger than |G|/2. Hence no proper subgroup of (Z/2nZ)× can have size larger than 2n−2

(when n ≥ 3). Since 5 +2nZ generates a cyclic subgroup of this maximal size, one often says
that (Z/2nZ)× is almost cyclic. H

7 When is (Z/nZ)× Cyclic?

Let n ∈ N, n ≥ 2. Write n = pn1
1 p

n2
2 · · · pnr

r for distinct primes pi, and ni ∈ N. Then, as
noted above, the map ρ of the CRT provides an isomorphism of (Z/nZ)× with the group

(Z/pn1
1 Z)× × (Z/pn2

2 Z)× × · · · × (Z/pnr
r Z)×, (3)

and according to what we have proven each factor is either cyclic or almost cyclic (if pi = 2
and ni ≥ 3).

We will determine when (Z/nZ)× is cyclic by analyzing its 2-torsion subgroup. Recall
that if G is an abelian group, its 2-torsion subgroup is

G(2) = {g ∈ G | g2 = e},

which consists of the elements of G that are their own inverses. Of fundamental importance
are the following result and its corollary.

11



Lemma 12. Let G be a finite cyclic group of even order. Then |G(2)| = 2.

Proof. Let G = 〈g〉 and n = |G| = ord(g). Note that {e, gn/2} ⊆ G(2). We claim the sets
are actually equal. Let a ∈ G(2). We know a = gk for some k and e = a2 = g2k so that
n|2k and hence (n/2)|k. Write k = m(n/2) and apply the division algorithm to further write
m = 2q + r with r = 0, 1. Then

a = gk = (gn/2)2q+r = gnq(gn/2)r = (gn/2)r ∈ {e, gn/2}

which proves that G(2) ⊆ {e, gn/2}, as claimed.
Since gn/2 6= e this proves that |G(2)| = |{e, gn/2}| = 2.

Corollary 3. Let G be a finite abelian group of even order. If |G(2)| 6= 2, then G is not
cyclic.

Proof. This is just the contrapositive of the lemma.

Notice that ϕ(n) is even if n ≥ 3 so that we can attempt to apply Corollary 3 to (Z/nZ)×.
Before we do, we state one more result, whose proof we leave as a straightforward exercise.

Lemma 13. Let G1, G2, . . . , Gn be abelian groups and G = G1 × G2 × · · · × Gn. Then
G(2) = G1(2)×G2(2)× · · · ×Gn(2).

Theorem 6. If n is divisible by two odd primes, of the form 4m where m is odd, or is
divisible by 8, then (Z/nZ)× is not cyclic.

Proof. If n is divisible by distinct odd primes, say p and q, then we know (Z/nZ)× is iso-
morphic to

(Z/paZ)× × (Z/qbZ)× × · · · .
Since both (Z/paZ)× and (Z/qbZ)× are cyclic groups of even order, Lemma 12 implies their
2-torsion subgroups both have size two. By Lemma 13, this means (Z/nZ)× has 2-torsion
subgroup of size at least 4. By Corollary 3, we conclude that (Z/nZ)× is not cyclic.

The same argument applies when n = 4m with m odd, since then m is divisible by an
odd prime p, (Z/4Z)× has order 2 and (Z/nZ)× is isomorphic to

(Z/4Z)× × (Z/paZ)× × · · · .

Finally, if 8|n, then n = 2km with k ≥ 3 and m odd so that (Z/nZ)× is isomorphic to

(Z/2kZ)× × (Z/mZ)× ∼= Z/2Z× Z/2k−2Z× (Z/mZ)×

and again the first two factors provide at least four 2-torsion elements, preventing (Z/nZ)×

from being cyclic.

Corollary 4. Let n ∈ N. The group (Z/nZ)× is cyclic if and only if:

1. n = 2, 4;

2. n = pa for some odd prime p and n ∈ N;

3. n = 2pa for some odd prime p and n ∈ N.
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Proof. The preceding theorem shows that these are the only possibilities for cyclic (Z/nZ)×.
We need only check that they actually work. Based on what we know so far, the only
question is case 3. But in this case the reduction map r : (Z/2paZ)× → (Z/paZ)× is actually
an isomorphism since it is surjective and both groups have size ϕ(pa). Consequently, since
(Z/paZ)× is cyclic so is (Z/2paZ)×.

We are finally in a position to answer a question posed in the context of Wilson’s theorem.
Namely, what is the result when all of the elements of (Z/nZ)× are multiplied together?
Equivalently, what is the congruence class of∏

1≤a≤n−1
(a,n)=1

a

modulo n? Wilson’s theorem asserts that when n = p is prime, we always get −1 modulo
p. To determine what happens in general, we first remind the reader of the main abstract
ingredient in the proof of Wilson’s theorem. Given a finite abelian group G, by pairing
elements with their inverses we proved that∏

g∈G

g =
∏

g∈G(2)

g.

It turns out that when G = (Z/nZ)×, n > 2, there is another natural pairing among
the elements of G(2). Specifically, note that if a + nZ ∈ G(2), then −a + nZ ∈ G(2) since
(−a+ nZ)2 = (−a)2 + nZ = a2 + nZ = (a+ nZ)2 = 1 + nZ. Moreover, a+ nZ 6= −a+ nZ,
since otherwise n|2a, which would imply n|2 as (n, a) = 1, an impossibility. Finally, note
that if we pair a+ nZ and −a+ nZ in the product over G(2), we get

(a+ nZ)(−a+ nZ) = −a2 + nZ = −(a+ nZ)2 = −1 + nZ.

Since there are half as many pairs of elements of G(2) as there are individual elements, we
have therefore proven the following result.

Lemma 14. Let n > 2 and G = (Z/nZ)×. Then∏
g∈G

g =
∏

g∈G(2)

g = (−1)|G(2)|/2 + nZ.

Equivalently, ∏
1≤a≤n−1
(a,n)=1

a ≡ (−1)|G(2)|/2 (mod n).

Note that we could have proven this result some time ago, as it uses none of the structural
facts about (Z/nZ)× that we have deduced so far. But at that point we would have been
unable to determine |G(2)| and actually evaluate the product. However, we can do so now.

We need to count G(2) when G = (Z/nZ)×. According to the decomposition (3) of
(Z/nZ)× and the structure theorems for (Z/pmZ)×, we find that (Z/nZ)× is always the
product of (at least one) cyclic groups of even order. Each has 2-torsion of size two by
Lemma 12, which means that |G(2)| = 2N ,4 where N is the number of cyclic factors, by

4It is true in general for an arbitrary abelian group G that, if G(2) is finite, then |G(2)| is a power of 2. This is a consequence
of a result in group theory known as Cauchy’s Theorem.
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Lemma 13. If N > 1 then G is not cyclic by Corollary 3, whereas if N = 1, G is definitely
cyclic since it is isomorphic to a “product” with a single cyclic factor. Applying this in the
preceding Lemma we obtain our final result.

Theorem 7. For n > 2∏
1≤a≤n−1
(a,n)=1

a ≡

{
−1 (mod n) if (Z/nZ)× is cyclic,

1 (mod n) otherwise.

Example 8. If n = 20 we have∏
1≤a≤19
(a,20)=1

a = 1 · 3 · 7 · 9 · 11 · 13 · 17 · 19

≡ 1 · 3 · 7 · 9 · (−9) · (−7) · (−3) · (−1) (mod 20)

≡ (−1)4 · 12 · 32 · 72 · 92 (mod 20)

≡ 9 · 9 (mod 20)

≡ 1 (mod 20)

as expected, since

(Z/20Z)× ∼= (Z/4Z)× × (Z/5Z)× ∼= Z/2Z× Z/4Z

is not a cyclic group. �
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