Number Theory I
AsSIGnMENT 1.1
Spring 2018

Exercise 1. Let $a, b, c, r, s \in \mathbb{Z}$. Show that if $a \mid b$ and $a \mid c$, then $a \mid r b+s c$.

Exercise 2. Prove that if $n \in \mathbb{N}$ is composite, then $2^{n}-1$ is composite.

Exercise 3. Consider the monoid $M=\mathbb{N} \backslash\{2\}$. Show that the Fundamental Theorem of Arithmetic does not hold in M by verifying that 3.8 and 4.6 are distinct prime factorizations of 24 in M.

