Number Theory I
Assignment 11.1
Spring 2018

Exercise 1. Let $B \geq 2$ and consider the following algorithm. Let $n \in \mathbb{N}_{0}$ and successively use the division algorithm to write

$$
\begin{aligned}
& n=q_{0} B+a_{0}, \quad 0 \leq a_{0}<B, \\
& q_{0}=q_{1} B+a_{1}, \quad 0 \leq a_{1}<B, \\
& q_{1}=q_{2} B+a_{2}, \quad 0 \leq a_{2}<B, \\
& \quad \vdots \\
& q_{i}=q_{i+1} B+a_{i+1}, \quad 0 \leq a_{i+1}<B, \\
& \quad \vdots
\end{aligned}
$$

a. Show that $q_{0}>q_{1}>q_{2}>\cdots \geq 0$. Conclude that eventually $q_{m}=0$ and the algorithm terminates with an equation of the form $q_{m-1}=0 \cdot B+a_{m}$.
b. Show that

$$
n=a_{m} B^{m}+a_{m-1} B^{m-1}+\cdots+a_{1} B+a_{0}
$$

[Suggestion: Back-substitute.]

Exercise 2.

a. Express the message unit ZETA FUNCTION as an integer by writing it as a base 27 expansion. [Remark: The result has 19 (decimal) digits.]
b. Express the integer $M=4048645098839$ as a nine letter message unit by writing it in base 27 .

