Number Theory I
Assignment 11.2
Spring 2018
Due April 11

Exercise 1. Koblitz Exercise III.1.1.

Exercise 2. The Vigenère cipher is similar to the Caesar cipher except that it uses the previous plaintext letter to encrypt the next. Specifically, after choosing an initial key b_{0} from the (N letter) alphabet, to encrypt the message $P_{1} P_{2} \cdots P_{L}$ we set $C_{1}=P_{1}+b_{0}(\bmod N)$ and $C_{i}=P_{i}+P_{i-1}(\bmod N)$ for $i \geq 2$.

For example, to encrypt MATH using the key $b_{0}=\mathrm{G}$, we append G to the beginning of our message, obtaining GMAT, then add this, modulo 27 , to our original message character by character. Numerically this is

13	1	20	8
7	13	1	20
20	14	21	1

so that the ciphertext is TNUA.
Use the Vigenère cipher with key $b_{0}=\mathrm{Q}$ to encrypt the message TRAITOR.

Exercise 3. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $(a, n)=1$. Show that if $r \equiv s(\bmod \varphi(n))$ then $a^{r} \equiv a^{s}(\bmod n)$.

Exercise 4. Suppose that p and q are distinct primes, $n=p q$ and $e \equiv 1(\bmod \varphi(n))$. Show that if $(a, n) \neq 1$ then we still have $a^{e} \equiv a(\bmod n)$. [Suggestion: It suffices to assume $0 \leq a<n$ (why?). If $a \neq 0$ we can then assume further that $a=p^{r} k$ with ($\left.k, q\right)=1$ (why?).]

