Number Theory I Spring 2018

Assignment 12.3
Due April 18

Exercise 1. Let $a, b, c \in \mathbb{Z}$. Given a commutative ring R, recall that

$$
\mathcal{S}(R)=\left\{r \in R \mid a r^{2}+b r+c=0\right\} .
$$

a. If R, R^{\prime} are commutative rings and $\sigma: R \rightarrow R^{\prime}$ is an isomorphism, prove that σ yields a bijection $\mathcal{S}(R) \rightarrow \mathcal{S}\left(R^{\prime}\right)$.
b. If $R_{1}, R_{2}, \ldots, R_{n}$ are commutative rings, prove that

$$
\mathcal{S}\left(R_{1} \times R_{2} \times \cdots \times R_{n}\right)=\mathcal{S}\left(R_{1}\right) \times \mathcal{S}\left(R_{2}\right) \times \cdots \times \mathcal{S}\left(R_{n}\right) .
$$

Exercise 2. Determine if a is a square modulo p^{m}.
a. $a=3, p=7, m=13$.
b. $a=1162076, p=127, m=3$
c. $a=581869302, p=5463458093, m=1$

Exercise 3. Let $m \geq 3$ and $a \in \mathbb{Z}$ be odd. Show that $a \equiv b^{2}\left(\bmod 2^{m}\right)$ for some b if and only if $a^{2^{m-3}} \equiv 1\left(\bmod 2^{m}\right)$ and $a \equiv 1(\bmod 4)$. This is the $\left(\bmod 2^{m}\right)$ version of Euler's Criterion. [Suggestion: Recall that every element of $\mathbb{Z} / 2^{m} \mathbb{Z}$ can be written in the form $\pm 5^{k}+2^{m} \mathbb{Z}$, and that 5 has multiplicative order $2^{m-2}\left(\bmod 2^{m}\right)$.]

