

Number Theory I Spring 2018

Assignment 12.3 Due April 18

Exercise 1. Let $a, b, c \in \mathbb{Z}$. Given a commutative ring R, recall that

$$\mathcal{S}(R) = \{ r \in R \, | \, ar^2 + br + c = 0 \}.$$

- **a.** If R, R' are commutative rings and $\sigma : R \to R'$ is an isomorphism, prove that σ yields a bijection $\mathcal{S}(R) \to \mathcal{S}(R')$.
- **b.** If R_1, R_2, \ldots, R_n are commutative rings, prove that

$$\mathcal{S}(R_1 \times R_2 \times \cdots \times R_n) = \mathcal{S}(R_1) \times \mathcal{S}(R_2) \times \cdots \times \mathcal{S}(R_n).$$

Exercise 2. Determine if a is a square modulo p^m .

a. a = 3, p = 7, m = 13.
b. a = 1162076, p = 127, m = 3
c. a = 581869302, p = 5463458093, m = 1

Exercise 3. Let $m \ge 3$ and $a \in \mathbb{Z}$ be odd. Show that $a \equiv b^2 \pmod{2^m}$ for some b if and only if $a^{2^{m-3}} \equiv 1 \pmod{2^m}$ and $a \equiv 1 \pmod{4}$. This is the $\pmod{2^m}$ version of Euler's Criterion. [Suggestion: Recall that every element of $\mathbb{Z}/2^m\mathbb{Z}$ can be written in the form $\pm 5^k + 2^m\mathbb{Z}$, and that 5 has multiplicative order $2^{m-2} \pmod{2^m}$.]