Number Theory I Spring 2018

Assignment 13.1
Due April 25

Exercise 1. Consider the quadratic congruence

$$
\begin{equation*}
x^{2}-7 x+2 \equiv 0(\bmod n) . \tag{1}
\end{equation*}
$$

a. If $n=4102925927536873$, how many solutions $(\bmod n)$ does (1) have?
b. If $n=5211824826871163$, how many solutions $(\bmod n)$ does (1) have?

Exercise 2. Find every solution $(\bmod 15015)$ to the quadratic congruence $x^{2}+111 x+5 \equiv 0$ $(\bmod 15015)$. [Suggestion: For each prime power p^{m} dividing 15015 , solve $x^{2}+111 x+5 \equiv 0$ $\left(\bmod p^{m}\right)$ by hand. Then use a computer to combine these solutions in every possible way using the CRT.]

Exercise 3. Prove the following generalization of Euler's Criterion. If G is a finite cyclic group whose order is divisible by k, then $a \in G$ has a k th root in G if and only if $a^{|G| / k}=e$.

