

Number Theory I Spring 2018

Assignment 13.2 Due April 25

Exercise 1. Let p be an odd prime and $b \in \mathbb{Z}$ coprime to p. Suppose that b is a quadratic nonresidue of p. Use the complete multiplicativity of the Legendre symbol to show that every integer $a \in \mathbb{Z}$ coprime to p is either a quadratic residue of p or congruent (mod p) to the product of b and a quadratic residue of p. [Suggestion: If a is a quadratic nonresidue, consider the congruence $bx \equiv a \pmod{p}$.]

Exercise 2. Let p be an odd prime. In class we gave a constructive proof that $\left(\frac{a}{p}\right) = 1$ implies a is a square (mod p^m) for all $m \in \mathbb{N}$. We can give a nonconstructive proof using Euler's Criterion as follows.

- **a.** If $\left(\frac{a}{p}\right) = 1$, explain why we can write $a^{(p-1)/2} = 1 + kp$ for some $k \in \mathbb{Z}$.
- **b.** Use induction to prove that $(1 + kp)^{p^{m-1}} \equiv 1 \pmod{p^m}$ for $m \ge 1$.
- **c.** Put parts **a** and **b** together to conclude that a is a square (mod p^m) for all $m \in \mathbb{N}$.

Exercise 3. Let p be a prime (not necessarily odd). Given $a \in \mathbb{Z}$ we define

$$\nu_p(a) = \max\{n \in \mathbb{N}_0 \,|\, p^n | a\},\$$

the *p*-adic valuation of *a*. Since $p^n|0$ for all $n \in \mathbb{N}_0$, we set $\nu_p(0) = \infty$.

- **a.** Show that for all $a, b \in \mathbb{Z}$, $\nu_p(ab) = \nu_p(a) + \nu_p(b)$.
- **b.** Let $r \in \mathbb{Q}$ and write $r = \frac{a}{b}$ (not necessarily reduced). Define $\nu_p(r) = \nu_p(a) \nu_p(b)$. Use part **a** to show that $\nu_p(r)$ is well-defined, i.e. if we also have $r = \frac{c}{d}$, then $\nu_p(c) \nu_p(d) = \nu_p(a) \nu_p(b)$. [Suggestion: How can you tell when two fractions are equal?]
- **c.** For $r \in \mathbb{Q}$ define the *p*-adic absolute value of *r* by

$$|r|_p = p^{-\nu_p(r)}$$

Show that $|\cdot|_p$ has the usual properties of an absolute value, namely for all $r, s \in \mathbb{Q}$:

- i. $|r|_p \ge 0$ and $|r|_p = 0$ if and only if r = 0;
- **ii.** $|rs|_p = |r|_p |s|_p$;
- iii. $|r+s|_p \le |r|_p + |s|_p$.

[Suggestion: For iii show that $|\cdot|_p$ actually satisfies the (stronger) ultrametric inequality, $|r+s|_p \leq \max\{|r|_p, |s|_p\}$.]