Number Theory I

Assignment 13.2

Exercise 1. Let p be an odd prime and $b \in \mathbb{Z}$ coprime to p. Suppose that b is a quadratic nonresidue of p. Use the complete multiplicativity of the Legendre symbol to show that every integer $a \in \mathbb{Z}$ coprime to p is either a quadratic residue of p or congruent $(\bmod p)$ to the product of b and a quadratic residue of p. [Suggestion: If a is a quadratic nonresidue, consider the congruence $b x \equiv a(\bmod p)$.]

Exercise 2. Let p be an odd prime. In class we gave a constructive proof that $\left(\frac{a}{p}\right)=1$ implies a is a square $\left(\bmod p^{m}\right)$ for all $m \in \mathbb{N}$. We can give a nonconstructive proof using Euler's Criterion as follows.
a. If $\left(\frac{a}{p}\right)=1$, explain why we can write $a^{(p-1) / 2}=1+k p$ for some $k \in \mathbb{Z}$.
b. Use induction to prove that $(1+k p)^{p^{m-1}} \equiv 1\left(\bmod p^{m}\right)$ for $m \geq 1$.
c. Put parts \mathbf{a} and \mathbf{b} together to conclude that a is a square $\left(\bmod p^{m}\right)$ for all $m \in \mathbb{N}$.

Exercise 3. Let p be a prime (not necessarily odd). Given $a \in \mathbb{Z}$ we define

$$
\nu_{p}(a)=\max \left\{n \in \mathbb{N}_{0}\left|p^{n}\right| a\right\}
$$

the p-adic valuation of a. Since $p^{n} \mid 0$ for all $n \in \mathbb{N}_{0}$, we set $\nu_{p}(0)=\infty$.
a. Show that for all $a, b \in \mathbb{Z}, \nu_{p}(a b)=\nu_{p}(a)+\nu_{p}(b)$.
b. Let $r \in \mathbb{Q}$ and write $r=\frac{a}{b}$ (not necessarily reduced). Define $\nu_{p}(r)=\nu_{p}(a)-\nu_{p}(b)$. Use part a to show that $\nu_{p}(r)$ is well-defined, i.e. if we also have $r=\frac{c}{d}$, then $\nu_{p}(c)-\nu_{p}(d)=$ $\nu_{p}(a)-\nu_{p}(b)$. [Suggestion: How can you tell when two fractions are equal?]
c. For $r \in \mathbb{Q}$ define the p-adic absolute value of r by

$$
|r|_{p}=p^{-\nu_{p}(r)}
$$

Show that $|\cdot|_{p}$ has the usual properties of an absolute value, namely for all $r, s \in \mathbb{Q}$:
i. $|r|_{p} \geq 0$ and $|r|_{p}=0$ if and only if $r=0$;
ii. $|r s|_{p}=|r|_{p}|s|_{p}$;
iii. $|r+s|_{p} \leq|r|_{p}+|s|_{p}$.
[Suggestion: For iii show that $|\cdot|_{p}$ actually satisfies the (stronger) ultrametric inequality, $\left.|r+s|_{p} \leq \max \left\{|r|_{p},|s|_{p}\right\}.\right]$

