Number Theory I Spring 2018

Exercise 1. Let p an odd prime, $p \nmid a$ and suppose that $\left(\frac{a}{p}\right)=1$. Show that the algorithm we gave for finding square roots of $a\left(\bmod p^{m}\right)$ can be written in the form

$$
r_{m+1} \equiv \frac{1}{2}\left(r_{m}+\frac{a}{r_{m}}\right)\left(\bmod p^{m+1}\right)
$$

where the fractions are simply a notational device to indicate taking the inverse ($\bmod p^{m}$) of the element in the denominator. Show that, up to the fact that we are performing modular arithmetic, this is the same recursion given by Newton's method from calculus for approximating \sqrt{a}.

Exercise 2. Show that $\left(\frac{2}{7}\right)=1$ and find the square roots of $2\left(\bmod 7^{m}\right)$ for $1 \leq m \leq 5$, using either the algorithm discussed in class, or its reformulation given above.

