Number Theory I
Assignment 2.1
Spring 2018
Due January 24

Exercise 1. Use the Euclidean Algorithm to compute the following GCDs. Express each GCD as a linear combination of its arguments.
a. $(455,1235)$
b. $(1248,8421)$
c. $(27182,31415)$

Exercise 2. Prove the following extension of Euclid's Lemma. If p is prime, $a_{1}, a_{2}, \ldots, a_{n} \in$ \mathbb{Z} and $p \mid a_{1} a_{2} \cdots a_{n}$, then $p \mid a_{i}$ for some $1 \leq i \leq n$. [Suggestion: Induct on n.]

Exercise 3. Let $a, b \in \mathbb{Z}$. Prove that

$$
\{n(a, b) \mid n \in \mathbb{Z}\}=\{r a+s b \mid r, s \in \mathbb{Z}\}
$$

i.e. that the set of multiples of (a, b) is the same as the set of \mathbb{Z}-linear combinations of a and b.

Exercise 4. Let $a, b, n \in \mathbb{Z}$. Prove that $(n a, n b)=|n|(a, b)$. [Suggestion: Use Bézout's Lemma and the preceding exercise to show that the two sides of the equation divide each other. Why is this sufficient?]

