Number Theory I
Assignment 3.1
Spring 2018

Exercise 1. Prove that every perfect cube is of the form $7 k$ or $7 k \pm 1$ for some $k \in \mathbb{Z}$.

Exercise 2. Prove that $4^{n} \equiv 3 n+1(\bmod 9)$ for any $n \in \mathbb{N}$. [Suggestion: Write $4=3+1$ and use the Binomial Theorem.]

Exercise 3. Prove that $53^{103}+103^{53}$ is divisible by 39 and that $111^{333}+333^{111}$ is divisible by 7 .

Exercise 4. Show that if $p>3$ is prime, then 13 divides $10^{2 p}-10^{p}+1$. [Suggestion: Show first that $p \equiv \pm 1(\bmod 6)$, then compute $10^{6}(\bmod 13)$.]

