

Number Theory I Spring 2018

Assignment 3.1 Due January 31

Exercise 1. Prove that every perfect cube is of the form 7k or $7k \pm 1$ for some $k \in \mathbb{Z}$.

Exercise 2. Prove that $4^n \equiv 3n + 1 \pmod{9}$ for any $n \in \mathbb{N}$. [Suggestion: Write 4 = 3 + 1 and use the Binomial Theorem.]

Exercise 3. Prove that $53^{103} + 103^{53}$ is divisible by 39 and that $111^{333} + 333^{111}$ is divisible by 7.

Exercise 4. Show that if p > 3 is prime, then 13 divides $10^{2p} - 10^p + 1$. [Suggestion: Show first that $p \equiv \pm 1 \pmod{6}$, then compute $10^6 \pmod{13}$.]