Number Theory I
Assignment 3.2
Spring 2018

Exercise 1. Let G be a set with an associative binary operation with identity e. Our textbook states the "existence of inverses" axiom as follows: for each $a \in G$ there exists $b \in G$ so that $a b=e$. How does this differ from the axiom we stated in class? Show that the two axioms are equivalent.

Exercise 2. Let p be a prime.
a. Prove that for $1 \leq k \leq p-1$, the binomial coefficient $\binom{p}{k}$ is divisible by p.
b. Let $a, b \in \mathbb{Z}$. Prove that $(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p)$.

Exercise 3. Let G be a group.
a. Prove that the identity element of G is unique. [Suggestion: If e_{1} and e_{2} are both identities, consider $e_{1} e_{2}$.]
b. Let $a \in G$. Prove that the inverse of a is unique. [Suggestion: If b and c are both inverses of a, consider bac.]

