

Number Theory I Spring 2018

Assignment 4.1 Due February 7

Exercise 1. Let R be a ring with additive identity element 0. Prove that for all $a \in R$, a0 = 0a = 0. [Suggestion: Compute 0 + 0 and multiply both sides of your result by a.]

Exercise 2. Compute the following inverses.

- **a.** $(19+23\mathbb{Z})^{-1}$ in $\mathbb{Z}/23\mathbb{Z}$
- **b.** $(43 + 103\mathbb{Z})^{-1}$ in $\mathbb{Z}/103\mathbb{Z}$
- c. $(17 + 299\mathbb{Z})^{-1}$ in $\mathbb{Z}/299\mathbb{Z}$

Exercise 3.

- **a.** Let R be a ring and $a \in \mathbb{R}^{\times}$. Show that the function $L_a : \mathbb{R} \to \mathbb{R}$ given by $x \mapsto ax$ is a bijection.
- **b.** Let G be a group and $g \in G$. Show that the function $L_g : G \to G$ given by $x \mapsto gx$ is a bijection.

Exercise 4. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with (a, n) = 1. Suppose that $S \subseteq \mathbb{Z}$ contains exactly one element from each congruence class in $\mathbb{Z}/n\mathbb{Z}$. Prove that the same is true of $aS = \{as \mid s \in S\}$. [Suggestion: Apply exercise **3a** to the ring $\mathbb{Z}/n\mathbb{Z}$.]