Number Theory I
Assignment 4.1 Spring 2018

Due February 7

Exercise 1. Let R be a ring with additive identity element 0 . Prove that for all $a \in R$, $a 0=0 a=0$. [Suggestion: Compute $0+0$ and multiply both sides of your result by a.]

Exercise 2. Compute the following inverses.
a. $(19+23 \mathbb{Z})^{-1}$ in $\mathbb{Z} / 23 \mathbb{Z}$
b. $(43+103 \mathbb{Z})^{-1}$ in $\mathbb{Z} / 103 \mathbb{Z}$
c. $(17+299 \mathbb{Z})^{-1}$ in $\mathbb{Z} / 299 \mathbb{Z}$

Exercise 3.

a. Let R be a ring and $a \in R^{\times}$. Show that the function $L_{a}: R \rightarrow R$ given by $x \mapsto a x$ is a bijection.
b. Let G be a group and $g \in G$. Show that the function $L_{g}: G \rightarrow G$ given by $x \mapsto g x$ is a bijection.

Exercise 4. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $(a, n)=1$. Suppose that $S \subseteq \mathbb{Z}$ contains exactly one element from each congruence class in $\mathbb{Z} / n \mathbb{Z}$. Prove that the same is true of $a S=\{a s \mid s \in S\}$. [Suggestion: Apply exercise 3a to the ring $\mathbb{Z} / n \mathbb{Z}$.]

