Number Theory I
Assignment 5.1
Spring 2018
Due February 14

Exercise 1. Solve the linear congruence, if possible. Feel free to use a computer to find GCDs and modular inverses.
a. $377 x \equiv 300(\bmod 479)$
b. $212 x \equiv 136(\bmod 872)$
c. $885 x \equiv 217(\bmod 903)$
d. $57 x \equiv 66(\bmod 753)$

Exercise 2. Let $a, b \in \mathbb{Z}, n \in \mathbb{N}$. Suppose that $d \in \mathbb{N}$ is a common divisor of $a, b$ and $n$. Prove that

$$
a \equiv b(\bmod n) \Leftrightarrow \frac{a}{d} \equiv \frac{b}{d}\left(\bmod \frac{n}{d}\right)
$$

## Exercise 3. Let

$$
\pi_{1}(x)=\#\{p \leq x \mid p \equiv 1(\bmod 4)\} \quad \text { and } \quad \pi_{3}(x)=\#\{p \leq x \mid p \equiv 3(\bmod 4)\}
$$

Prove that

$$
\lim _{x \rightarrow \infty} \frac{\pi_{3}(x)}{\pi(x)}=\frac{1}{2} \Longleftrightarrow \lim _{x \rightarrow \infty} \frac{\pi_{1}(x)}{\pi(x)}=\frac{1}{2} .
$$

Exercise 4. Let $a \in \mathbb{Z}, b \in \mathbb{N}$. Prove that if $(a, b)>1$, then $\{p \equiv a(\bmod b) \mid p$ is prime $\}$ is finite.

