Number Theory I
Assignment 5.2 Spring 2018

Due February 14

Exercise 1. Textbook exercise 1.3.

Exercise 2. Let $n>2$ be an integer and suppose that the n terms of the arithmetic progression

$$
\begin{equation*}
p, p+d, p+2 d, p+3 d, \ldots, p+(n-1) d \tag{1}
\end{equation*}
$$

are prime. Let $q<n$ be prime. We will prove that $q \mid d .{ }^{1}$
a. Assume $q \nmid d$. Show that no two of the first q terms of the progression (1)

$$
\begin{equation*}
p, p+d, p+2 d, \ldots, p+(q-1) d \tag{2}
\end{equation*}
$$

are congruent modulo q. [Suggestion: Argue by contradiction.]
b. Use part a to show that one of the terms, say $p+t d$, in (2) is divisible by q.
c. Show that if $p<n$, then one of the terms in (1) would be composite. Hence $n \leq p .{ }^{2}$
d. Use parts \mathbf{b} and \mathbf{c} to show that $q<p+t d$ and hence that $p+t d$ is a composite member of (1). This conclusion establishes the result.

Remark The Green-Tao theorem, proven in 2004, asserts that there exist arbitrarily long arithmetic progressions of primes. In other words, for any $n \geq 2$ one can find $d \geq 2$ so that (1) consists of only prime numbers. Even so, it wasn't until 2015 that the longest arithmetic progression of primes, of length only 26 , was found by Bryan Little:

Notice that d is indeed divisible by every prime less than 26 , as we just proved it must be.

[^0]
[^0]: ${ }^{1}$ Note that this puts a severe restriction on the structure of consecutive primes in an arithmetic progression.
 ${ }^{2}$ This puts yet another restriction on the progression (1): an n term progression must start with a prime $p \geq n$. This also proves an arithmetic progression of primes must be finite: its length cannot exceed its first member.

