Number Theory I
Assignment 5.3
Spring 2018

Exercise 1. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $(a, n)=1$. Show that $a+n \mathbb{Z}$ has (additive) order n in $\mathbb{Z} / n \mathbb{Z}$. [Suggestion: Show that if $k(a+n \mathbb{Z})=0+n \mathbb{Z}$, then $n \mid k$.]

Exercise 2. Find the order of every element of $(\mathbb{Z} / n \mathbb{Z})^{\times}$for $n=7,8,9,10$.

Exercise 3. If G is a group and $g \in G$ has order n, show that $e, g, g^{2}, \ldots, g^{n-1}$ are distinct elements of G. Also show that any power of g is equal to one of these. [Suggestions: For the first part argue by contradiction. For the second apply the division algorithm to the exponent.]

