Exercise 1.

a. Compute the last two digits of 3^{45}. [Hint: $\varphi(100)=40$.]
b. Find the remainder when 2^{100000} is divided by 77. [Hint: $\varphi(77)=60$.]

Exercise 2. If $m, n \in \mathbb{N}$ are relatively prime, prove that

$$
m^{\varphi(n)}+n^{\varphi(m)} \equiv 1(\bmod m n) .
$$

[Suggestion: Argue that it suffices to show the stated congruence holds modulo m and modulo n separately.]

Exercise 3.

a. Verify that $4(29!)+5$! is divisible by 31 .
b. Show that $18!\equiv-1(\bmod 437)$.

Exercise 4. Prove that if $n>4$ is composite, then $(n-1)!\equiv 0(\bmod n)$. [Suggestion: Use the fact that $n=a b$ with $1<a, b<n$. The case $a=b$ needs to be treated separately.]

