

Number Theory I Spring 2018

Assignment 6.1 Due February 21

Exercise 1.

- **a.** Compute the last two digits of 3^{45} . [*Hint:* $\varphi(100) = 40$.]
- **b.** Find the remainder when 2^{100000} is divided by 77. [*Hint:* $\varphi(77) = 60$.]

Exercise 2. If $m, n \in \mathbb{N}$ are relatively prime, prove that

 $m^{\varphi(n)} + n^{\varphi(m)} \equiv 1 \pmod{mn}.$

[Suggestion: Argue that it suffices to show the stated congruence holds modulo m and modulo n separately.]

Exercise 3.

- **a.** Verify that 4(29!) + 5! is divisible by 31.
- **b.** Show that $18! \equiv -1 \pmod{437}$.

Exercise 4. Prove that if n > 4 is composite, then $(n-1)! \equiv 0 \pmod{n}$. [Suggestion: Use the fact that n = ab with 1 < a, b < n. The case a = b needs to be treated separately.]