Exercise 1. Let $n_{1}, n_{2}, \ldots, n_{r} \in \mathbb{N}$ be pairwise relatively prime and set $N=n_{1} n_{2} \cdots n_{r}$. Recall the function from the proof of the CRT:

$$
\begin{aligned}
\rho: \mathbb{Z} / N \mathbb{Z} & \rightarrow \mathbb{Z} / n_{1} \mathbb{Z} \times \mathbb{Z} / n_{2} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{r} \mathbb{Z} \\
a+N \mathbb{Z} & \mapsto\left(a+n_{1} \mathbb{Z}, a+n_{2} \mathbb{Z}, \cdots, a+n_{r} \mathbb{Z}\right)
\end{aligned}
$$

Prove that CRT implies ρ is a bijection.

Exercise 2. Let $m, n \in \mathbb{N}$ be relatively prime. Prove that

$$
x=a n^{\varphi(m)}+b m^{\varphi(n)}
$$

provides a solution to the system

$$
\begin{aligned}
& x \equiv a(\bmod m) \\
& x \equiv b(\bmod n)
\end{aligned}
$$

Exercise 3. Use exercise 2 and the CRT to solve the system

$$
\begin{aligned}
& x \equiv 1(\bmod 11), \\
& x \equiv 4(\bmod 12) .
\end{aligned}
$$

