

Number Theory I Spring 2018

Assignment 6.2 Due February 21

Exercise 1. Let $n_1, n_2, \ldots, n_r \in \mathbb{N}$ be pairwise relatively prime and set $N = n_1 n_2 \cdots n_r$. Recall the function from the proof of the CRT:

 $\rho: \mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}$ $a + N\mathbb{Z} \mapsto (a + n_1\mathbb{Z}, a + n_2\mathbb{Z}, \dots, a + n_r\mathbb{Z}).$

Prove that CRT implies ρ is a bijection.

Exercise 2. Let $m, n \in \mathbb{N}$ be relatively prime. Prove that

$$x = an^{\varphi(m)} + bm^{\varphi(n)}$$

provides a solution to the system

$$x \equiv a \pmod{m},$$
$$x \equiv b \pmod{n}.$$

Exercise 3. Use exercise 2 and the CRT to solve the system

$$x \equiv 1 \pmod{11},$$
$$x \equiv 4 \pmod{12}.$$