Number Theory I
Assignment 7.1 Spring 2018

Exercise 1. Solve the simultaneous congruences

$$
\begin{aligned}
& x \equiv 5(\bmod 11), \\
& x \equiv 14(\bmod 29), \\
& x \equiv 15(\bmod 31) .
\end{aligned}
$$

Exercise 2. Solve the simultaneous congruences

$$
\begin{aligned}
& 2 x \equiv 1(\bmod 5), \\
& 3 x \equiv 9(\bmod 6) \\
& 4 x \equiv 1(\bmod 7), \\
& 5 x \equiv 9(\bmod 11 .)
\end{aligned}
$$

[Suggestion: Solve each congruence for x first by multiplying by the appropriate inverse, then use the CRT.]

Exercise 3. Regiomontanus (1436-1476) asked for the smallest positive integer leaving remainders of 3,11 and 15 when divided by 10, 13 and 17, respectively. Find this integer.

Exercise 4. Find the inverse of $17+210 \mathbb{Z}$ by finding the inverses of $17+2 \mathbb{Z}, 17+3 \mathbb{Z}, 17+5 \mathbb{Z}$ and $17+7 \mathbb{Z}$, then using the Chinese remainder theorem to "glue" these results together.

