

Number Theory I Spring 2018

Assignment 7.2 Due February 28

Exercise 1. Let $\alpha : R \to S$ be an isomorphism of rings.

- **a.** Prove that $\alpha(1_R) = 1_S$. [Suggestion: The identity in a ring is unique. So it suffices to show $\alpha(1_R) \cdot s = s \cdot \alpha(1_R) = s$ for all $s \in S$. To do this use the surjectivity of α .]
- **b.** Given $r \in R$, prove that $r \in R^{\times}$ if and only if $\alpha(r) \in S^{\times}$. This shows α maps R^{\times} bijectively onto S^{\times} .

Exercise 2. Find $\varphi(n)$ for each value of *n* below.

- **a.** 2592
- **b.** 4851
- **c.** 111111
- **d.** 15!

Exercise 3. Prove the following generalization of the multiplicative property of φ : for $m, n \in \mathbb{N}$, if d = (m, n), then

$$\varphi(mn)\varphi(d) = \varphi(m)\varphi(n)d.$$

[Suggestion: Use the formula $\varphi(a) = a \prod_{p|a} (1 - p^{-1}).$]

Exercise 4. Let $m, n \in \mathbb{N}$ with m|n. Prove that $\varphi(mn) = m\varphi(n)$. [Suggestion: See the suggestion for the previous exercise and show that p|mn if and only if p|n.]