Number Theory I Spring 2018
Assignment 8.1
Due March 7

Exercise 1. Use the Repeated Squaring algorithm to compute the following.
a. The remainder when 619^{55} is divided by 733 .
b. The remainder when 1073^{145} is divided by 1537 .
c. The remainder when $2018^{13772000000}$ is divided by 2049. [Suggestion: Check to see if Euler's theorem can help you reduce the size of the exponent.]

Exercise 2. Recall that we deduced Wilson's theorem,

$$
(p-1)!\equiv-1(\bmod p) \Leftrightarrow p \text { is prime }
$$

by multiplying together all of the elements of $(\mathbb{Z} / p \mathbb{Z})^{\times}$and interpreting the result as a congruence. What happens if we do the same thing with an arbitrary $n \in \mathbb{N}$? That is, can we determine the congruence class

$$
P+n \mathbb{Z}=\prod_{g \in(\mathbb{Z} / n \mathbb{Z})^{\times}} g ?
$$

Formulate a conjecture about $P+n \mathbb{Z}$ by computing it for $n \leq 100$. Be as precise as you can. [Suggestion: Use a computer.]

