Number Theory I

Assignment 8.2
Spring 2018

Exercise 1. Prove that

$$
\begin{aligned}
n= & 185327073637076855291755518012905992650368428443467865444249246547055030415 \\
& 530205721466814637573922492124921069090395720566635195412142549271807948869
\end{aligned}
$$

is composite.

Exercise 2. Prove that 561 is a Carmichael number. [Suggestion: Show that if $(a, 561)=1$, then $a^{560} \equiv 1(\bmod p)$ for each prime $p \mid 561$. Why is this sufficient?]

Exercise 3.

a. Let $a, b \in \mathbb{R}$ and set $t=a+b, n=a b$. Show that if you are given t and n, then you can determine a and b. [Suggestion: Consider the roots of the polynomial $x^{2}-t x+n$.]
b. Let p, q be distinct primes and set $n=p q$. Show that if you are given n and $\varphi(n)$, then you can determine p and q. [Suggestion: Express $p+q$ in terms of n and $\varphi(n)$ and use part a.]
c. Given that $n=3452366617984213531848875693960104104481$ is the product of two distinct primes and $\varphi(n)=3452366617984213531729007293807679518912$, factor n.

Exercise 4. Let $B \geq 2$ and consider the base B expansion of $n \in \mathbb{N}$:

$$
n=\sum_{j=0}^{N} d_{j} B^{j}, \quad d_{j} \in\{0,1,2, \ldots, B-1\}, \quad d_{N} \neq 0 .
$$

The place-value notation for this expansion is $\left(d_{N} d_{N-1} \cdots d_{1} d_{0}\right)_{B} .{ }^{1}$
a. Express 83177 in base 7 place-value notation.
b. The base 16 expansion of a natural number is referred to as its hexadecimal representation. When using hexadecimal expansions it is typical to represent the "digits" 10, 11, $12,13,14$ and 15 by the symbols A, B, C, D, E and F, respectively.
i. Express $(9 E F 6)_{16}$ in decimal notation.
ii. Express 27999 in hexadecimal place-value notation.

[^0]
[^0]: ${ }^{1}$ When $B=10$, we omit the subscript and parentheses, obtaining the familiar digital expansion of n.

