Exercise 1. For $n \in \mathbb{N}$, prove that

$$
\sum_{d \mid n}(-1)^{n / d} \varphi(d)= \begin{cases}0 & \text { if } n \text { is even } \\ -n & \text { if } n \text { is odd }\end{cases}
$$

[Suggestion: If n is odd, argue that $(-1)^{n / d}=-1$ for all d. Otherwise write $n=2^{k} m$ with m odd and $k \geq 1$ and show that

$$
\left.\sum_{d \mid n}(-1)^{n / d} \varphi(d)=\sum_{d \mid 2^{k-1} m} \varphi(d)-\sum_{d \mid m} \varphi\left(2^{k} d\right) \cdot\right]^{1}
$$

Exercise 2. Modify the proof of Gauss' result on φ to show that for $n \in \mathbb{N}$

$$
\sum_{a=1}^{n}(a, n)=\sum_{d \mid n} d \varphi\left(\frac{n}{d}\right)=n \sum_{d \mid n} \frac{\varphi(d)}{d}
$$

Exercise 3. Let G be a group and $g \in G$ with $\operatorname{ord}(g)=n$.
a. Prove that the function $c: \mathbb{Z} / n \mathbb{Z} \rightarrow\langle g\rangle$ given by $c(a+n \mathbb{Z})=g^{a}$ is well-defined.
b. Show that c is a bijection. [Suggestion: According to exercise 5.3.3, it suffices to show c is surjective.]
c. Show that c is operation-preserving, i.e. that $c((a+n \mathbb{Z})+(b+n \mathbb{Z}))=c(a+n \mathbb{Z}) \cdot c(b+n \mathbb{Z})$ for all $a, b \in \mathbb{Z}$.

This shows that any cyclic group of order n is isomorphic to $\mathbb{Z} / n \mathbb{Z}$. That is, up to relabelling, there is only one cyclic group of order n for each $n \in \mathbb{N}$.

[^0]
[^0]: ${ }^{1}$ It occurs to me that this approach requires an additional fact which we haven't proven. Namely, that if $(m, n)=1$ and $d \mid m n$, then $d=d_{1} d_{2}$ where $d_{1} \mid m$ and $d_{2} \mid n$. This can be easily proven using Béout's lemma or the Fundamental Theorem of Arithmetic. In the context of the problem at hand this means that the divisors of $n=2^{k} m$ must all have the form $d=2^{j} \ell$, where $0 \leq j \leq k$ and $\ell \mid m$.

