

Number Theory I Spring 2018 Assignment 9.2 Due March 21

**Exercise 1.** Prove the result referenced in the footnote of the previous assignment. Specifically, show that if  $m, n \in \mathbb{N}$  are coprime and  $d \in \mathbb{N}$ , then d|mn if and only if there exist unique  $d_1, d_2 \in \mathbb{N}$  so that  $d_1|m, d_2|n$  and  $d = d_1d_2$ . [Suggestion: For existence, show that  $d_1 = (d, m), d_2 = (d, n)$  work; use Bézout's lemma. For uniqueness, show that if a|m and b|n, then (a, b) = 1; use Bézout's lemma again.]

**Exercise 2.** Let F be field in which  $-1 \neq 1$ .

- **a.** Show that if  $r \in F$  solves  $x^2 + 1 = 0$ , then r has (multiplicative) order 4.
- **b.** Show that  $x^2 + 1 = 0$  has a solution in  $\mathbb{Z}/p\mathbb{Z}$  if and only if  $p \equiv 1 \pmod{4}$ . [Suggestion: Consider the equation  $x^4 1 = 0$ .]

**Exercise 3.** Let p be an odd prime and g be a generator of  $(\mathbb{Z}/p\mathbb{Z})^{\times}$ .

- **a.** Show that  $g^{(p-1)/2}$  is a solution of  $x^2 1 = 0$ . Conclude that  $g^{(p-1)/2} = -1 + p\mathbb{Z}$ .
- **b.** Provide an alternate proof of Wilson's theorem by observing that

$$(p-1)! + p\mathbb{Z} = g^{1+2+\dots+(p-1)}$$

and using part **a**.