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Quadratic Congruences

Introduction

Let R be a (commutative) ring in which 2 =1 + 1g € R*.
Consider a quadratic equation of the form

ax?+bx+c=0, ac R*. (1)
In this situation we can complete the square in the usual way:
ax®>+bx+c = a(x®*+ba " x)+c=a(x+ba 271 fc—p?a~127?

Equating with zero, adding b?a~1272 — ¢ to both sides and

multiplying both sides by 22a, (1) becomes
4a%(x 4+ ba~1271)? = p% — 4ac. (2)
Here we have used the fact that

22:(1R+1R)(1R+1R):1R+1R+1R+1R:4.
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Quadratic Congruences

The Quadratic Formula

It follows that (2) (and hence (1)) has solutions iff

A= b’>—4ac =k’ keR. (3)
N

the discriminant

We then have
2a(x + ba 1271 = /b2 —dac < 2ax+b=+/b2—4ac
& |x=(2a)7! (—b+ Vb2 — 4ac) ,

where k = v/b? — 4ac denotes any solution to (3).

This is the familiar quadratic formula for the solutions to (1), valid
in any ring R in which 2a € R*.
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Quadratic Congruences

A quadratic congruence has the form
ax?+ bx+c =0 (mod n), a,b,ccZ.

To solve this congruence we will view it as an equation in Z/nZ.

my _my k

Write n = p;" py --p;(n with p; distinct primes and m; € N.

Recall the ring isomorphism of the CRT:

k
p: 2/ — ] Z/p" 2,
i=1

r4nZ s (r+ pliz)k .
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Quadratic Congruences

Given a ring R, we can interpret any t € Z as an element of R by
setting t =t - 1g. We then let

S(R) = {r € R|ar®*+ br 4+ c = 0}.
If 0 : R — R’ is a ring isomorphism, one can show that
o:S8(R) — S(R)

is a bijection.

One can also show that

S(Rl X R2 X X Rk) = S(Rl) X S(Rz) X o+ X S(Rk)
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Quadratic Congruences

Applying these observations to p and Z/nZ we find that we have a
bijection

k
p:S(Z/nZ) - | S(Z/p]"Z).
i=1

This proves the following result.

Theorem

The solutions to the quadratic congruence
ax? + bx + ¢ = 0 (mod n)
can be found by solving

ax? + bx +c=0 (mod p™), i=1,2,...,k,

and "gluing” tuples of solutions together using the CRT.
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Corollary

The number of solutions (modulo n) to the quadratic congruence
ax?> 4+ bx + ¢ = 0 (mod n)
is the product of the numbers of solutions (modulo p;™) to

ax® + bx +c=0 (mod pM™), i=1,2,..., k.

We have therefore reduced the study of quadratic congruences to
the case of prime power modulus, p™.

Since the quadratic formula only holds when 2a € (Z/p™Z)*, we
will assume p is odd and p 1t a.
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Euler's Criterion

Looking at the quadratic formula, we see that we are faced with
two questions:

@ How can we tell if A is a square in (Z/p™Z)*?
@ How can we find all of the values of /A in (Z/p™Z)*?

Because (Z/p™7Z)* is cyclic, the first question has a
straightforward answer.

Theorem (Euler’s Criterion)

Let G be a finite cyclic group of even order and a € G. Write
G(2) = {e,h}. Then

62 e ifa= b forsomeb e G,
| h  otherwise.
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Proof.

Notice that

(al€12)2 = Jl¢l = ¢ = 4l®1/2 ¢ G(2) = {e, h}.

It therefore suffices to prove that al®l/2 = e iff a = b2.
(<) If a= b?, then al®l/2 = (p?)IC1/2 = plGl = ¢,

(=) Write G = (g), a= g¥. If al®l/2 = e, then (g¥)!¢l/2 = e and
k
gklel/z — ]G|‘ 6] 2]G|‘k|G| = 2lk.

Writing k = 2m we have
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Euler’s Criterion

Recall that for an odd prime p, if G = (Z/p™Z)*, then
1+ p™Z # —1+ p™Z are the two elements of G(2).

Corollary (Euler's Criterion (mod p™))

Let p be an odd prime and m € N. If p{ a, then

P p-1)/2 — 1 (mod p™) if a= b?> (mod p™) for some b,
—1 (mod p™)  otherwise.

Remarks:

@ Because we have an efficient way to compute powers modulo
p™, Euler’s criterion is a very effective way to detect squares
modulo p™.

@ One can state the corollary a bit more generally, replacing p™
with any n for which (Z/nZ)* is cyclic and using the
exponent ¢(n)/2 instead.
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Euler’s Criterion

Determine if 784967 is a square modulo 37°. What about
197546117

We use repeated squaring to compute

7849673718 = 1 (mod 375),
197546113718 = _1 (mod 37°).

Hence the former is a square (mod 37) while the latter is not.

Remark: Euler’s criterion does not tell us what the square roots of
784967 (mod 37°) actually em are. They turn out to be
+47205606.
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How Many Squares?

The proof of Euler's Criterion also establishes the following useful
result.

Let G = (g) be a finite cyclic group of even order. Then a € G is
a square if and only if it is an even power of g. In particular,
exactly half of the elements of G are squares.

The only thing we need to establish is the final sentence.

The elements of G are e,g,g2,g3, o ,g|G|_1.
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According to the first part of the corollary:

@ the |G|/2 even exponents 0,2,4,...,|G| — 2 yield squares;

@ the |G|/2 odd exponents 1,3,5,...,|G| — 1 do not.

Now that we have an effective way of detecting squares modulo
p™, we turn to the question of how many square roots there are.

The following general result provides the answer.

Let G be a finite cyclic group of even order. If a € G is a square,

2

then the equation x“ = a has exactly two solutions in G.
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Proof.
Write G(2) = {e, h}. If a is a square, we can write a = b

2

Suppose c< = a as well. Then

2=a=b = b3*=e = (blc)’=e = blceG(2).
Hence b-lc=eor b~lc = h,i.e. c = b or c = bh.

Therefore b and bh are the only solutions to x% = a.

Since h # e, this proves the result. Ol

Remark: This generalizes the result that |G(2)| = 2 for finite
cyclic groups of even order, which is the case a = e.
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Back to (Z/p™Z)*

Suppose that a + p™Z € (Z/p™Z)* is a square.
Write a4 pmZ = (b + p™Z)? = b? + p™Z.

According to an earlier comment and the proof of the theorem,
+b+ p™Z must be the (only) two square roots of a + pZ.

Let p be an odd prime, m € N and a € (Z/p™Z)* a square. Then
a has exactly two square roots and they are (additive) inverses of
each other.

Remark: Later we will see how to obtain a square root (mod p™)
from one (mod p). There exist efficient algorithms for finding
square roots (mod p), but they are a bit too tricky for us.
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Root Counting

Back to Z/nZ

We can now strengthen our earlier statement on the number of
solutions to a quadratic congruence.

Theorem

Consider the quadratic congruence
ax? 4+ bx + ¢ =0 (mod n). (4)

If A = b — 4ac and (2alA, n) = 1, then (4) has a solution if and
only if A is a square modulo p™ for each prime power dividing n.
In this case, (4) has exactly 2 incongruent solutions modulo n,
where k is the number of prime divisors of n.

We already know that the number of solutions (mod n) is the
product of the numbers of solutions (mod p™).
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According to the quadratic formula and the final corollary above,
the number of solutions (mod p™) is 2 or 0, depending on whether
or not A + p™Z is a square in (Z/p™7Z)*.

So we have solutions to (4) if and only if A is a square (mod p™)
for every p™ dividing n, and there will be exactly 2% solutions in
this case.

O

This completes the proof.

Solve the quadratic congruence

x? 4+ 3x +17 = 0 (mod 315).
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We have a =1 and

A=3>—-4.17=9—68 = —59.

Since n =315=132.5.7, (2aQA,n) = 1.

Furthermore
A=1=1%(mod5),
A =4=2%(mod7),
A =4=2%(mod 9).

Hence the original congruence has 23 solutions.

Daileda

Quadratic Congruences and Euler’s Criterion



Since the inverse of 2 is 3(mod 5), 4(mod 7), 5(mod 9),the
quadratic formula yields the solutions

x=3(-3+1)=3,4 (mod 5),
x=4(—-3+2)=1,3 (mod 7),
x =5(-3+2)=2,4(mod 9),

Using the CRT to solve the system arising from every possible
combination of roots we obtain

x = 29,38,94,148, 164,218, 274,283 (mod 315) \
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