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Introduction

Let R be a (commutative) ring in which 2 = 1R + 1R ∈ R×.
Consider a quadratic equation of the form

ax2 + bx + c = 0, a ∈ R×. (1)

In this situation we can complete the square in the usual way:

ax2+bx+c = a(x2+ba−1x)+c = a(x+ba−12−1)2+c−b2a−12−2

Equating with zero, adding b2a−12−2 − c to both sides and
multiplying both sides by 22a, (1) becomes

4a2(x + ba−12−1)2 = b2 − 4ac . (2)

Here we have used the fact that

22 = (1R + 1R)(1R + 1R) = 1R + 1R + 1R + 1R = 4.
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The Quadratic Formula

It follows that (2) (and hence (1)) has solutions iff

∆ = b2 − 4ac︸ ︷︷ ︸
the discriminant

= k2, k ∈ R. (3)

We then have

2a(x + ba−12−1) =
√
b2 − 4ac ⇔ 2ax + b =

√
b2 − 4ac

⇔ x = (2a)−1
(
−b +

√
b2 − 4ac

)
,

where k =
√
b2 − 4ac denotes any solution to (3).

This is the familiar quadratic formula for the solutions to (1), valid
in any ring R in which 2a ∈ R×.
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Quadratic Congruences

A quadratic congruence has the form

ax2 + bx + c ≡ 0 (mod n), a, b, c ∈ Z.

To solve this congruence we will view it as an equation in Z/nZ.

Write n = pm1
1 pm2

2 · · · p
mk
k with pi distinct primes and mi ∈ N.

Recall the ring isomorphism of the CRT:

ρ : Z/nZ→
k∏

i=1

Z/pmi
i Z,

r + nZ 7→ (r + pmi
i Z)ki=1.

Daileda Quadratic Congruences and Euler’s Criterion



Quadratic Congruences Euler’s Criterion Root Counting

Given a ring R, we can interpret any t ∈ Z as an element of R by
setting t = t · 1R . We then let

S(R) = {r ∈ R | ar2 + br + c = 0}.

If σ : R → R ′ is a ring isomorphism, one can show that

σ : S(R)→ S(R ′)

is a bijection.

One can also show that

S(R1 × R2 × · · · × Rk) = S(R1)× S(R2)× · · · × S(Rk).
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Applying these observations to ρ and Z/nZ we find that we have a
bijection

ρ : S(Z/nZ)→
k∏

i=1

S(Z/pmi
i Z).

This proves the following result.

Theorem

The solutions to the quadratic congruence

ax2 + bx + c ≡ 0 (mod n)

can be found by solving

ax2 + bx + c ≡ 0 (mod pmi
i ), i = 1, 2, . . . , k,

and “gluing” tuples of solutions together using the CRT.
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Corollary

The number of solutions (modulo n) to the quadratic congruence

ax2 + bx + c ≡ 0 (mod n)

is the product of the numbers of solutions (modulo pmi
i ) to

ax2 + bx + c ≡ 0 (mod pmi
i ), i = 1, 2, . . . , k.

We have therefore reduced the study of quadratic congruences to
the case of prime power modulus, pm.

Since the quadratic formula only holds when 2a ∈ (Z/pmZ)×, we
will assume p is odd and p - a.
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Euler’s Criterion

Looking at the quadratic formula, we see that we are faced with
two questions:

How can we tell if ∆ is a square in (Z/pmZ)×?

How can we find all of the values of
√

∆ in (Z/pmZ)×?

Because (Z/pmZ)× is cyclic, the first question has a
straightforward answer.

Theorem (Euler’s Criterion)

Let G be a finite cyclic group of even order and a ∈ G . Write
G (2) = {e, h}. Then

a|G |/2 =

{
e if a = b2 for some b ∈ G ,

h otherwise.
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Proof.

Notice that

(a|G |/2)2 = a|G | = e ⇒ a|G |/2 ∈ G (2) = {e, h}.

It therefore suffices to prove that a|G |/2 = e iff a = b2.

(⇐) If a = b2, then a|G |/2 = (b2)|G |/2 = b|G | = e.

(⇒) Write G = 〈g〉, a = gk . If a|G |/2 = e, then (gk)|G |/2 = e and

gk|G |/2 = e ⇒ |G |
∣∣∣∣k|G |2

⇒ 2|G |
∣∣∣∣k |G | ⇒ 2|k .

Writing k = 2m we have

a = gk = g2m = (gm)2.
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Recall that for an odd prime p, if G = (Z/pmZ)×, then
1 + pmZ 6= −1 + pmZ are the two elements of G (2).

Corollary (Euler’s Criterion (mod pm))

Let p be an odd prime and m ∈ N. If p - a, then

ap
m−1(p−1)/2 ≡

{
1 (mod pm) if a ≡ b2 (mod pm) for some b,

− 1 (mod pm) otherwise.

Remarks:

Because we have an efficient way to compute powers modulo
pm, Euler’s criterion is a very effective way to detect squares
modulo pm.

One can state the corollary a bit more generally, replacing pm

with any n for which (Z/nZ)× is cyclic and using the
exponent ϕ(n)/2 instead.
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Example

Determine if 784967 is a square modulo 375. What about
19754611?

We use repeated squaring to compute

78496737
4·18 ≡ 1 (mod 375),

1975461137
4·18 ≡ −1 (mod 375).

Hence the former is a square (mod 37) while the latter is not.

Remark: Euler’s criterion does not tell us what the square roots of
784967 (mod 375) actually em are. They turn out to be
±47205606.
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How Many Squares?

The proof of Euler’s Criterion also establishes the following useful
result.

Corollary

Let G = 〈g〉 be a finite cyclic group of even order. Then a ∈ G is
a square if and only if it is an even power of g . In particular,
exactly half of the elements of G are squares.

Proof.

The only thing we need to establish is the final sentence.

The elements of G are e, g , g2, g3, . . . , g |G |−1.
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(cont.)

According to the first part of the corollary:

the |G |/2 even exponents 0, 2, 4, . . . , |G | − 2 yield squares;

the |G |/2 odd exponents 1, 3, 5, . . . , |G | − 1 do not.

Now that we have an effective way of detecting squares modulo
pm, we turn to the question of how many square roots there are.

The following general result provides the answer.

Theorem

Let G be a finite cyclic group of even order. If a ∈ G is a square,
then the equation x2 = a has exactly two solutions in G .
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Proof.

Write G (2) = {e, h}. If a is a square, we can write a = b2.

Suppose c2 = a as well. Then

c2 = a = b2 ⇒ b−2c2 = e ⇒ (b−1c)2 = e ⇒ b−1c ∈ G (2).

Hence b−1c = e or b−1c = h, i.e. c = b or c = bh.

Therefore b and bh are the only solutions to x2 = a.

Since h 6= e, this proves the result.

Remark: This generalizes the result that |G (2)| = 2 for finite
cyclic groups of even order, which is the case a = e.
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Back to (Z/pmZ)×

Suppose that a + pmZ ∈ (Z/pmZ)× is a square.

Write a + pmZ = (b + pmZ )2 = b2 + pmZ.

According to an earlier comment and the proof of the theorem,
±b + pmZ must be the (only) two square roots of a + pZ.

Corollary

Let p be an odd prime, m ∈ N and a ∈ (Z/pmZ)× a square. Then
a has exactly two square roots and they are (additive) inverses of
each other.

Remark: Later we will see how to obtain a square root (mod pm)
from one (mod p). There exist efficient algorithms for finding
square roots (mod p), but they are a bit too tricky for us.
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Back to Z/nZ

We can now strengthen our earlier statement on the number of
solutions to a quadratic congruence.

Theorem

Consider the quadratic congruence

ax2 + bx + c ≡ 0 (mod n). (4)

If ∆ = b2 − 4ac and (2a∆, n) = 1, then (4) has a solution if and
only if ∆ is a square modulo pm for each prime power dividing n.
In this case, (4) has exactly 2k incongruent solutions modulo n,
where k is the number of prime divisors of n.

We already know that the number of solutions (mod n) is the
product of the numbers of solutions (mod pm).
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According to the quadratic formula and the final corollary above,
the number of solutions (mod pm) is 2 or 0, depending on whether
or not ∆ + pmZ is a square in (Z/pmZ)×.

So we have solutions to (4) if and only if ∆ is a square (mod pm)
for every pm dividing n, and there will be exactly 2k solutions in
this case.

This completes the proof.

Example

Solve the quadratic congruence

x2 + 3x + 17 ≡ 0 (mod 315).
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We have a = 1 and

∆ = 32 − 4 · 17 = 9− 68 = −59.

Since n = 315 = 32 · 5 · 7, (2a∆, n) = 1.

Furthermore

∆ ≡ 1 ≡ 12 (mod 5),

∆ ≡ 4 ≡ 22 (mod 7),

∆ ≡ 4 ≡ 22 (mod 9).

Hence the original congruence has 23 solutions.
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Since the inverse of 2 is 3(mod 5), 4(mod 7), 5(mod 9),the
quadratic formula yields the solutions

x ≡ 3(−3± 1) ≡ 3, 4 (mod 5),

x ≡ 4(−3± 2) ≡ 1, 3 (mod 7),

x ≡ 5(−3± 2) ≡ 2, 4 (mod 9),

Using the CRT to solve the system arising from every possible
combination of roots we obtain

x ≡ 29, 38, 94, 148, 164, 218, 274, 283 (mod 315) .
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