Quadratic Congruences, the Quadratic Formula, and Euler's Criterion

R. C. Daileda

Trinity University

Number Theory

Introduction

Let R be a (commutative) ring in which $2=1_{R}+1_{R} \in R^{\times}$. Consider a quadratic equation of the form

$$
\begin{equation*}
a x^{2}+b x+c=0, \quad a \in R^{\times} \tag{1}
\end{equation*}
$$

In this situation we can complete the square in the usual way:
$a x^{2}+b x+c=a\left(x^{2}+b a^{-1} x\right)+c=a\left(x+b a^{-1} 2^{-1}\right)^{2}+c-b^{2} a^{-1} 2^{-2}$
Equating with zero, adding $b^{2} a^{-1} 2^{-2}-c$ to both sides and multiplying both sides by $2^{2} a$, (1) becomes

$$
\begin{equation*}
4 a^{2}\left(x+b a^{-1} 2^{-1}\right)^{2}=b^{2}-4 a c . \tag{2}
\end{equation*}
$$

Here we have used the fact that

$$
2^{2}=\left(1_{R}+1_{R}\right)\left(1_{R}+1_{R}\right)=1_{R}+1_{R}+1_{R}+1_{R}=4
$$

The Quadratic Formula

It follows that (2) (and hence (1)) has solutions iff

$$
\begin{equation*}
\Delta=\underbrace{b^{2}-4 a c}_{\text {the discriminant }}=k^{2}, k \in R . \tag{3}
\end{equation*}
$$

We then have

$$
\begin{aligned}
2 a\left(x+b a^{-1} 2^{-1}\right) & =\sqrt{b^{2}-4 a c} \Leftrightarrow 2 a x+b=\sqrt{b^{2}-4 a c} \\
& \Leftrightarrow x=(2 a)^{-1}\left(-b+\sqrt{b^{2}-4 a c}\right),
\end{aligned}
$$

where $k=\sqrt{b^{2}-4 a c}$ denotes any solution to (3).
This is the familiar quadratic formula for the solutions to (1), valid in any ring R in which $2 a \in R^{\times}$.

Quadratic Congruences

A quadratic congruence has the form

$$
a x^{2}+b x+c \equiv 0(\bmod n), \quad a, b, c \in \mathbb{Z}
$$

To solve this congruence we will view it as an equation in $\mathbb{Z} / n \mathbb{Z}$.
Write $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}$ with p_{i} distinct primes and $m_{i} \in \mathbb{N}$.
Recall the ring isomorphism of the CRT:

$$
\begin{aligned}
\rho: \mathbb{Z} / n \mathbb{Z} & \rightarrow \prod_{i=1}^{k} \mathbb{Z} / p_{i}^{m_{i}} \mathbb{Z}, \\
r+n \mathbb{Z} & \mapsto\left(r+p_{i}^{m_{i}} \mathbb{Z}\right)_{i=1}^{k} .
\end{aligned}
$$

Given a ring R, we can interpret any $t \in \mathbb{Z}$ as an element of R by setting $t=t \cdot 1_{R}$. We then let

$$
\mathcal{S}(R)=\left\{r \in R \mid a r^{2}+b r+c=0\right\} .
$$

If $\sigma: R \rightarrow R^{\prime}$ is a ring isomorphism, one can show that

$$
\sigma: \mathcal{S}(R) \rightarrow \mathcal{S}\left(R^{\prime}\right)
$$

is a bijection.

One can also show that

$$
\mathcal{S}\left(R_{1} \times R_{2} \times \cdots \times R_{k}\right)=\mathcal{S}\left(R_{1}\right) \times \mathcal{S}\left(R_{2}\right) \times \cdots \times \mathcal{S}\left(R_{k}\right)
$$

Applying these observations to ρ and $\mathbb{Z} / n \mathbb{Z}$ we find that we have a bijection

$$
\rho: \mathcal{S}(\mathbb{Z} / n \mathbb{Z}) \rightarrow \prod_{i=1}^{k} \mathcal{S}\left(\mathbb{Z} / p_{i}^{m_{i}} \mathbb{Z}\right)
$$

This proves the following result.

Theorem

The solutions to the quadratic congruence

$$
a x^{2}+b x+c \equiv 0(\bmod n)
$$

can be found by solving

$$
a x^{2}+b x+c \equiv 0\left(\bmod p_{i}^{m_{i}}\right), \quad i=1,2, \ldots, k,
$$

and "gluing" tuples of solutions together using the CRT.

Corollary

The number of solutions (modulo n) to the quadratic congruence

$$
a x^{2}+b x+c \equiv 0(\bmod n)
$$

is the product of the numbers of solutions (modulo $p_{i}^{m_{i}}$) to

$$
a x^{2}+b x+c \equiv 0\left(\bmod p_{i}^{m_{i}}\right), \quad i=1,2, \ldots, k
$$

We have therefore reduced the study of quadratic congruences to the case of prime power modulus, p^{m}.

Since the quadratic formula only holds when $2 a \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$, we will assume p is odd and $p \nmid a$.

Euler's Criterion

Looking at the quadratic formula, we see that we are faced with two questions:

- How can we tell if Δ is a square in $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$?
- How can we find all of the values of $\sqrt{\Delta}$ in $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$? Because $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$is cyclic, the first question has a straightforward answer.

Theorem (Euler's Criterion)

Let G be a finite cyclic group of even order and $a \in G$. Write $G(2)=\{e, h\}$. Then

$$
a^{|G| / 2}= \begin{cases}e & \text { if } a=b^{2} \text { for some } b \in G \\ h & \text { otherwise }\end{cases}
$$

Proof.
Notice that

$$
\left(a^{|G| / 2}\right)^{2}=a^{|G|}=e \Rightarrow a^{|G| / 2} \in G(2)=\{e, h\} .
$$

It therefore suffices to prove that $a^{|G| / 2}=e$ iff $a=b^{2}$.
(\Leftarrow) If $a=b^{2}$, then $a^{|G| / 2}=\left(b^{2}\right)^{|G| / 2}=b^{|G|}=e$.
(\Rightarrow) Write $G=\langle g\rangle, a=g^{k}$. If $a^{|G| / 2}=e$, then $\left(g^{k}\right)^{|G| / 2}=e$ and

$$
\left.g^{k|G| / 2}=e \Rightarrow|G|\left|\frac{k|G|}{2} \Rightarrow 2\right| G| | k|G| \Rightarrow 2 \right\rvert\, k .
$$

Writing $k=2 m$ we have

$$
a=g^{k}=g^{2 m}=\left(g^{m}\right)^{2} .
$$

Recall that for an odd prime p, if $G=\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$, then $1+p^{m} \mathbb{Z} \neq-1+p^{m} \mathbb{Z}$ are the two elements of $G(2)$.

Corollary (Euler's Criterion $\left(\bmod p^{m}\right)$)

Let p be an odd prime and $m \in \mathbb{N}$. If $p \nmid a$, then

$$
a^{p^{m-1}(p-1) / 2} \equiv \begin{cases}1\left(\bmod p^{m}\right) & \text { if } a \equiv b^{2}\left(\bmod p^{m}\right) \text { for some } b, \\ -1\left(\bmod p^{m}\right) & \text { otherwise }\end{cases}
$$

Remarks:

- Because we have an efficient way to compute powers modulo p^{m}, Euler's criterion is a very effective way to detect squares modulo p^{m}.
- One can state the corollary a bit more generally, replacing p^{m} with any n for which $(\mathbb{Z} / n \mathbb{Z})^{\times}$is cyclic and using the exponent $\varphi(n) / 2$ instead.

Example

Determine if 784967 is a square modulo 37^{5}. What about 19754611?

We use repeated squaring to compute

$$
\begin{aligned}
784967^{37^{4} \cdot 18} & \equiv 1\left(\bmod 37^{5}\right) \\
19754611^{37^{4} \cdot 18} & \equiv-1\left(\bmod 37^{5}\right)
\end{aligned}
$$

Hence the former is a square $(\bmod 37)$ while the latter is not.
Remark: Euler's criterion does not tell us what the square roots of $784967\left(\bmod 37^{5}\right)$ actually em are. They turn out to be ± 47205606.

How Many Squares?

The proof of Euler's Criterion also establishes the following useful result.

Corollary

Let $G=\langle g\rangle$ be a finite cyclic group of even order. Then $a \in G$ is a square if and only if it is an even power of g. In particular, exactly half of the elements of G are squares.

Proof.

The only thing we need to establish is the final sentence.
The elements of G are $e, g, g^{2}, g^{3}, \ldots, g^{|G|-1}$.

(cont.)

According to the first part of the corollary:

- the $|G| / 2$ even exponents $0,2,4, \ldots,|G|-2$ yield squares;
- the $|G| / 2$ odd exponents $1,3,5, \ldots,|G|-1$ do not.

Now that we have an effective way of detecting squares modulo p^{m}, we turn to the question of how many square roots there are.

The following general result provides the answer.

Theorem

Let G be a finite cyclic group of even order. If $a \in G$ is a square, then the equation $x^{2}=$ a has exactly two solutions in G.

Proof.

Write $G(2)=\{e, h\}$. If a is a square, we can write $a=b^{2}$.
Suppose $c^{2}=a$ as well. Then
$c^{2}=a=b^{2} \Rightarrow b^{-2} c^{2}=e \Rightarrow\left(b^{-1} c\right)^{2}=e \Rightarrow b^{-1} c \in G(2)$.
Hence $b^{-1} c=e$ or $b^{-1} c=h$, i.e. $c=b$ or $c=b h$.
Therefore b and $b h$ are the only solutions to $x^{2}=a$.
Since $h \neq e$, this proves the result.

Remark: This generalizes the result that $|G(2)|=2$ for finite cyclic groups of even order, which is the case $a=e$.

Back to $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$

Suppose that $a+p^{m} \mathbb{Z} \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$is a square.
Write $a+p^{m} \mathbb{Z}=\left(b+p^{m} Z\right)^{2}=b^{2}+p^{m} \mathbb{Z}$.
According to an earlier comment and the proof of the theorem, $\pm b+p^{m} \mathbb{Z}$ must be the (only) two square roots of $a+p \mathbb{Z}$.

Corollary

Let p be an odd prime, $m \in \mathbb{N}$ and $a \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$a square. Then a has exactly two square roots and they are (additive) inverses of each other.

Remark: Later we will see how to obtain a square root $\left(\bmod p^{m}\right)$ from one $(\bmod p)$. There exist efficient algorithms for finding square roots $(\bmod p)$, but they are a bit too tricky for us.

Back to $\mathbb{Z} / n \mathbb{Z}$

We can now strengthen our earlier statement on the number of solutions to a quadratic congruence.

Theorem

Consider the quadratic congruence

$$
\begin{equation*}
a x^{2}+b x+c \equiv 0(\bmod n) \tag{4}
\end{equation*}
$$

If $\Delta=b^{2}-4 a c$ and $(2 a \Delta, n)=1$, then (4) has a solution if and only if Δ is a square modulo p^{m} for each prime power dividing n. In this case, (4) has exactly 2^{k} incongruent solutions modulo n, where k is the number of prime divisors of n.

We already know that the number of solutions $(\bmod n)$ is the product of the numbers of solutions $\left(\bmod p^{m}\right)$.

According to the quadratic formula and the final corollary above, the number of solutions $\left(\bmod p^{m}\right)$ is 2 or 0 , depending on whether or not $\Delta+p^{m} \mathbb{Z}$ is a square in $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$.

So we have solutions to (4) if and only if Δ is a square $\left(\bmod p^{m}\right)$ for every p^{m} dividing n, and there will be exactly 2^{k} solutions in this case.

This completes the proof.

Example

Solve the quadratic congruence

$$
x^{2}+3 x+17 \equiv 0(\bmod 315)
$$

We have $a=1$ and

$$
\Delta=3^{2}-4 \cdot 17=9-68=-59
$$

Since $n=315=3^{2} \cdot 5 \cdot 7,(2 a \Delta, n)=1$.

Furthermore

$$
\begin{aligned}
\Delta & \equiv 1 \equiv 1^{2}(\bmod 5) \\
\Delta & \equiv 4 \equiv 2^{2}(\bmod 7) \\
\Delta & \equiv 4 \equiv 2^{2}(\bmod 9)
\end{aligned}
$$

Hence the original congruence has 2^{3} solutions.

Since the inverse of 2 is $3(\bmod 5), 4(\bmod 7), 5(\bmod 9)$, the quadratic formula yields the solutions

$$
\begin{aligned}
& x \equiv 3(-3 \pm 1) \equiv 3,4(\bmod 5), \\
& x \equiv 4(-3 \pm 2) \equiv 1,3(\bmod 7), \\
& x \equiv 5(-3 \pm 2) \equiv 2,4(\bmod 9),
\end{aligned}
$$

Using the CRT to solve the system arising from every possible combination of roots we obtain

$$
x \equiv 29,38,94,148,164,218,274,283(\bmod 315)
$$

