The Fermat Factorization Method

R. C. Daileda

Trinity University

Number Theory

Introduction

Recall: The security of the RSA cryptosystem depends on the difficulty in factoring the encryption modulus $n=p q$.

Poor choices of p and q can lead to easily factored values of n, rendering the cryptosystem "cracked."

One such situation occurs when p and q are relatively close together. In this case one can apply the Fermat Factorization Method to find p and q.

Remark: The Fermat method can be applied to arbitrary odd n to try to find a divisor/complementary divisor pair that are relatively close together, if such a pair exists.

The Set-up

Suppose that $n=a b$ with $a>b$ odd. Notice that

$$
\begin{aligned}
n & =a b \\
& =\left(\frac{a+b}{2}+\frac{a-b}{2}\right)\left(\frac{a+b}{2}-\frac{a-b}{2}\right) \\
& =\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}
\end{aligned}
$$

If a and b are close together, then:

- $\frac{a-b}{2}$ is relatively small; specifically we assume $\frac{a-b}{2 \sqrt{2 b}}<\epsilon$.
- $\frac{a+b}{2}$ is not much larger than \sqrt{n}.

To quantify this final statement note that

$$
n=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2} \Rightarrow\left(\frac{a+b}{2}\right)^{2}-n=\left(\frac{a-b}{2}\right)^{2}
$$

and hence

$$
\left(\frac{a+b}{2}-\sqrt{n}\right)\left(\frac{a+b}{2}+\sqrt{n}\right)=\left(\frac{a-b}{2}\right)^{2} .
$$

Since

$$
\left(\frac{a+b}{2}+\sqrt{n}\right)>2 b \text { and }\left(\frac{a-b}{2}\right)^{2}>0
$$

we obtain

$$
0<\frac{a+b}{2}-\sqrt{n}<\left(\frac{a-b}{2 \sqrt{2 b}}\right)^{2}<\epsilon^{2} .
$$

The Algorithm: Fermat Factorization

Moral: If n is the product of two distinct odd numbers that are close together, then

$$
n=t^{2}-s^{2}
$$

where t is slightly larger than \sqrt{n} and s is relatively small.
How can we use this to factor n ? Set $t_{0}=\lceil\sqrt{n}\rceil$ and successively compute

$$
\sqrt{t_{0}^{2}-n}, \sqrt{\left(t_{0}+1\right)^{2}-n}, \sqrt{\left(t_{0}+2\right)^{2}-n}, \sqrt{\left(t_{0}+3\right)^{2}-n}, \ldots
$$

until one obtains

$$
\sqrt{\left(t_{0}+k\right)^{2}-n}=s \in \mathbb{N}
$$

If we set $t=t_{0}+k$, then $n=t^{2}-s^{2}=(t+s)(t-s)$.

Remarks:

- Because of our assumption on $(a-b) / 2$, this process is guaranteed to stop after roughly ϵ^{2} steps.
- The factors $(t+s)$ and $(t-s)$ are nontrivial because $t \sim \sqrt{n}$ while $s \sim 0$.

Example

Apply the Fermat Factorization Method to factor

$$
n=2251644881930449333 .
$$

We have

$$
t_{0}=\lceil\sqrt{n}\rceil=1500548194
$$

Moreover, we find that

$$
\begin{aligned}
\sqrt{t_{0}^{2}-n} & =\sqrt{586212303}=24211.821 \ldots, \\
\sqrt{\left(t_{0}+1\right)^{2}-n} & =2 \sqrt{896827173}=59894.145 \ldots, \\
\sqrt{\left(t_{0}+2\right)^{2}-n} & =\sqrt{6588405083}=81168.990 \ldots, \\
\sqrt{\left(t_{0}+3\right)^{2}-n} & =97926
\end{aligned}
$$

so that $t=t_{0}+3=1500548197$ and $s=97926$.
Hence $n=p q$ with

$$
\begin{aligned}
& p=t+s=1500646123, \\
& q=t-s=1500450271,
\end{aligned}
$$

both of which turn out to be prime. Note $\left(\frac{p-q}{2 \sqrt{2 q}}\right)^{2}=3.1955 \ldots$.

Example

The integer

$n=89564941429129460494158838187124492462610412156204$ 2227318384494381723497514540860474803494041479529

is the product of two primes. Use Fermat Factorization to find them.

We have

$$
\begin{aligned}
t_{0} & =\lceil\sqrt{n}\rceil \\
& =29927402397991286489627871143011285937749436382209
\end{aligned}
$$

and with the aid of a computer we find that

$$
\sqrt{\left(t_{0}+18\right)^{2}-n}=33408832099552561140000000
$$

Hence

$$
\begin{aligned}
& s=33408832099552561140000000 \\
& t=29927402397991286489627871143011285937749436382227
\end{aligned}
$$

so that the prime factorization of n is $p q$ where
$p=29927402397991286489627837734179186385188296382227$, $q=29927402397991286489627904551843385490310576382227$.

Note that $\left(\frac{p-q}{2 \sqrt{2 p}}\right)^{2}=18.6476 \ldots$.
Remark: Factoring n in this manner only took a matter of minutes using Maple. However, after over 8 hours neither Maple nor PARI could successfully factor n naïvely.

