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The Legendre Symbol

Definitions

Given an odd prime p and a € Z with p 1 a, we say a is a quadratic
residue of p if a= b?(mod p) for some b.

Otherwise a is a quadratic nonresidue.

The Legendre symbol of a at p is

<a> )1 if a is a quadratic residue of p,
] -1 otherwise.

p

(Z) is clearly p-periodic in a. Thus we can view
() (Z/pZ)* — {+1}.
p
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Euler’s criterion immediately implies the next result.

Let p be an odd prime, pta. Then

(a) = alP~I/2 (mod p).

p

We can use this theorem to prove the following important fact.

The Legendre symbol is completely multiplicative and induces a
surjective homomorphism

(p) (Z/pZ)* — {£1}.
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Proof.

We have already seen that exactly half of the elements of (Z/pZ)*
are squares a.k.a. quadratic residues.

Therefore (5) is surjective.

Let a, b € Z be coprime to p. Then so is ab and

<‘9b> = (ab)(P~1/2 = (P-1)/2p(P-1)/2 = (a) (2) (mod p).

p p
Because the values of <5) belong to {£1},

(2)-()0)-s

But the left-hand side is divisible by the odd prime p, so +2 are
impossible. This proves the result. O
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Quadratic Reciprocity, First Supplement: a = —1

When a = —1, the first theorem tells us that
1Y _(q\e-n2
> )= (=1) (mod p). (1)

Both sides of the congruence belong to {+1}.
Because p is odd, 1 # —1(mod p).

Hence (1) must actually be an equality.

Theorem (Quadratic Reciprocity, First Supplement)

Let p be an odd prime. Then

<p1> (1),
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Reduction to Prime Argument

Given a coprime to p, write a = € [[; ¢ with g; # p distinct
primes, € € {£+1}.

According to the preceding theorem

()= GIG) -G ()

1
nj odd

The First Supplement evaluates (%) The Second Supplement will
2
evaluate (5).

We are therefore reduced to evaluating (%) where g # p is an odd

prime. This is the subject of the Law of Quadratic Reciprocity.
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(z/pz)*

Back to (Z/p™Z)*

Let a € Z be coprime to p. It turns out that (%) controls whether

or not a is a square (mod p™) for all m € N!

Theorem

Suppose (%) = 1. Then there is a sequence of integers
b1, by, b3, ... so that:

@ bmi1 = bym(mod p™) for all m > 1;
o b2, =a (mod p™) for all m > 1.

In particular, a+ p™Z € (Z/p™Z)* is a square for all m > 1.

Remark: These conditions imply that the sequence {bp,}5_;
converges in the ring Z, of p-adic integers to /a.
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Proof: We recursively construct the sequence of b's.

Since a is a quadratic residue of p, there is a b; so that a = bf
(mod p).

Suppose we have found by, by, ..., by, as in the theorem.
Consider by, + kp™, which is = b, (mod p™) for any choice of k.
Moreover
(bm + kp™)? = b2, + 2bmkp™ + k*p*™
= b2, + 2bmkp™ (mod p™1)
=a+p™ + 2b,kp™ (mod pmt1)
=a+ ({4 2bymk)p™ (mod p™t1).

We need to choose k so that p|¢ 4 2bpyk, i.e. 2bmk = —¢(mod p).
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2bmk = —¢(mod p) is a linear congruence in the variable k.

Since p { 2by,, we have (2by,, p) = 1, which means the congruence
has a unique solution (mod p).

Choose any element k of the solution set and define
bmi+1 = bm + kp™. Then by, 1 has the desired properties.

Continuing this process indefinitely yields the sought after
sequence. L.
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Example

Show that —1 is a square (mod 625) and find its two square roots.

We have

5

Hence —1 is a square (mod 5™) for all m > 1.

(_1) —(C1)ED2 - (L2 =1

To find its square roots we implement the algorithm in the proof.

Since —1 = 4(mod 5), clearly by = 2. And since 22 = —1+1-5,
£ =1. So bp = by + 5k where

2bjk = —¢ (mod 5) = 4k=-1(mod5) = k=1 (mod5),

i.e. b2 =T7.

Daileda The Legendre Symbol



(Z/pZ)™ to (Z/p™Z)*

Now b3 = —1 +2-52 so that £ = 2. So we need to solve

2byk = —¢ (mod 5) = 4k=-2(mod5) = k=2 (mod5),
and b3 = by + 5%k = 57.

Finally, b3 = —1 + 26 - 53 yields £ = 26 and we solve for k:

2bsk = —¢ (mod 5) = 4k=—-1(mod5) = k=1 (modb5).
Thus by = b3 + 5%k = 182.

Therefore the two square roots of —1(mod 625) are

| +182 (mod 625) |
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Gauss' Lemma

Let’s finally start heading toward the Law of Quadratic Reciprocity.
Our first auxiliary result is the following.

Lemma (Gauss' Lemma)

Let p be an odd prime and suppose that p 1 a. For each

-1
re{a,2a,3a,...,p2 a}

choose the unique s, € —pT_l, —pT_3, 11,2, pT_l} 50
that r = s, (mod p). Then

(5)-cr

where v is the number of negative values of s,.

Daileda The Legendre Symbol




Quadratic Reciprocity

Proof of Gauss' Lemma

—1 —3 —1
Let Ip = {—pT,—pT,...,—17172,...7%}.

Note that if s # t € I, then:
° (s,p)=(t,p) =1

0 0<|s—t|<p—-1<p = pts—t = s#t(mod p);
o |Ip| =p—1=¢(p)
Therefore the map

lp = (Z/pZ)*
S+— s+ pZ

is a bijection and s, is well-defined.
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Suppose s, = —s,.. Then r = —r'(mod p).

Thus ai = —aj(mod p) for some 1 </, j < P%l.

Since (a, p) = 1, we can cancel it to obtain i = —j (mod p) or
i+j=0(mod p) = pli+].

But 0 < i+ j < p—1, so this is impossible.

Therefore {s,} cannot contain both s and —s for any s € /,.

It follows that
-1
{SI’}:{61'1762'2763'3""761’1'p }
where each ¢; € {£1}.
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Now multiply together all of the r's and s,’s:

-1 -1
alP—1)/2 <p2>| = €162 €pm1 <p2>| (mod p)

the r's the s,'s

By an earlier theorem we therefore have

(5)=ortmn = 2) -

since both sides belong to {41} and p is odd. O
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Example
Consider p =11 and a = 7. We have 5= =5 and
= —4 (mod 11),
2.7=3(mod 11),
3.:7=-1(mod 11),
4.7= -5 (mod 11),
5.-7=2(mod 11).

Therefore, by Gauss' Lemma,

(f) ==t

and 7 is a quadratic nonresidue (mod 11).
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Remark

Let r € {a, 2a,3a,..., p%la}. Use the Division Algorithm to write

r=qp+r, 0<r <p.

Since r = r’(mod p), the uniqueness of s, implies:
P

o If ¥ <&, thens =/
o If > 2% then -8 <+ —p<0andr=r"—p(mod p).
Hence s, = r' — p.

It follows that v in Gauss' Lemma is the number of r’ that exceed
p/2.

This alternate characterization of v can sometimes be useful.
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Quadratic Reciprocity, Second Supplement: a = 2

We can now prove the second piece of the Law of Quadratic
Reciprocity.

Theorem (Quadratic Reciprocity, Second Supplement)

Let p be an odd prime. Then

<2> _ (—U* _ {1 ifp=+1 (mod 8),

-1 ifp=+3 (mod 8).

Proof. According to the preceding remark, we need to count how
often the remainder (mod p) in the set

{2,4,6,8,...,p—1}

exceeds p/2.



The Second Supplement

Since these numbers are already remainders, we are really asking:

How many even numbers are between g and p — 17

Since the least integer greater than £ is p—“ there are two cases.

Case 1. pTH isodd, i.e. p+1# O(mod 4) < p=1(mod 4).
In this case exactly half the numbers from pTH to p — 1 are even.

The evens therefore number

p—1-214+1 p-1
2 4

Note that p=1(mod 4) = PTH is odd. Thus, according to
Gauss' Lemma

(2) =0 = (0F)F = (-
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Case 2. 2t iseven, ie. p+1=0(mod 4) < p=3(mod 4).

In this case exactly half the numbers from pTH (odd) to p— 1 are

even, together with %1.
So the number of evens is

p-1-PF+1 . p-3 p+1

1
* 2 4 4

In this case p%l is odd, so that Gauss' Lemma gives

(2) = 0% =0 F =

p

The congruence based cases follow directly from this (common)
formula for (%) O]
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