The Legendre Symbol

R. C. Daileda

Trinity University

Number Theory

Definitions

Given an odd prime p and $a \in \mathbb{Z}$ with $p \nmid a$, we say a is a quadratic residue of p if $a \equiv b^{2}(\bmod p)$ for some b.

Otherwise a is a quadratic nonresidue.
The Legendre symbol of a at p is

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a quadratic residue of } p \\ -1 & \text { otherwise }\end{cases}
$$

$\left(\frac{a}{p}\right)$ is clearly p-periodic in a. Thus we can view

$$
\left(\frac{\dot{p}}{p}\right):(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow\{ \pm 1\} .
$$

Euler's criterion immediately implies the next result.

Theorem

Let p be an odd prime, $p \nmid a$. Then

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)
$$

We can use this theorem to prove the following important fact.

Theorem

The Legendre symbol is completely multiplicative and induces a surjective homomorphism

$$
\left(\frac{\cdot}{p}\right):(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow\{ \pm 1\} .
$$

Proof.

We have already seen that exactly half of the elements of $(\mathbb{Z} / p \mathbb{Z})^{\times}$ are squares a.k.a. quadratic residues.
Therefore $(\dot{\bar{p}})$ is surjective.
Let $a, b \in \mathbb{Z}$ be coprime to p. Then so is $a b$ and

$$
\left(\frac{a b}{p}\right) \equiv(a b)^{(p-1) / 2} \equiv a^{(p-1) / 2} b^{(p-1) / 2} \equiv\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)(\bmod p) .
$$

Because the values of $(\dot{\bar{p}})$ belong to $\{ \pm 1\}$,

$$
\left(\frac{a b}{p}\right)-\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=0, \pm 2
$$

But the left-hand side is divisible by the odd prime p, so ± 2 are impossible. This proves the result.

Quadratic Reciprocity, First Supplement: $a=-1$

When $a=-1$, the first theorem tells us that

$$
\begin{equation*}
\left(\frac{-1}{p}\right) \equiv(-1)^{(p-1) / 2}(\bmod p) \tag{1}
\end{equation*}
$$

Both sides of the congruence belong to $\{ \pm 1\}$.
Because p is odd, $1 \not \equiv-1(\bmod p)$.
Hence (1) must actually be an equality.

Theorem (Quadratic Reciprocity, First Supplement)

Let p be an odd prime. Then

$$
\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2} .
$$

Reduction to Prime Argument

Given a coprime to p, write $a=\epsilon \prod_{i} q_{i}^{n_{i}}$ with $q_{i} \neq p$ distinct primes, $\epsilon \in\{ \pm 1\}$.

According to the preceding theorem

$$
\left(\frac{a}{p}\right)=\left(\frac{\epsilon}{p}\right) \prod_{i}\left(\frac{q_{i}}{p}\right)^{n_{i}}=\left(\frac{\epsilon}{p}\right) \prod_{\substack{i \\ n_{i} \text { odd }}}\left(\frac{q_{i}}{p}\right) .
$$

The First Supplement evaluates $\left(\frac{\epsilon}{p}\right)$. The Second Supplement will evaluate $\left(\frac{2}{p}\right)$.

We are therefore reduced to evaluating $\left(\frac{q}{p}\right)$ where $q \neq p$ is an odd prime. This is the subject of the Law of Quadratic Reciprocity.

Back to $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{x}$

Let $a \in Z$ be coprime to p. It turns out that $\left(\frac{a}{p}\right)$ controls whether or not a is a square $\left(\bmod p^{m}\right)$ for all $m \in \mathbb{N}$!

Theorem

Suppose $\left(\frac{a}{p}\right)=1$. Then there is a sequence of integers $b_{1}, b_{2}, b_{3}, \ldots$ so that:

- $b_{m+1} \equiv b_{m}\left(\bmod p^{m}\right)$ for all $m \geq 1$;
- $b_{m}^{2} \equiv a\left(\bmod p^{m}\right)$ for all $m \geq 1$.

In particular, $a+p^{m} \mathbb{Z} \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$is a square for all $m \geq 1$.

Remark: These conditions imply that the sequence $\left\{b_{m}\right\}_{m=1}^{\infty}$ converges in the ring \mathbb{Z}_{p} of p-adic integers to \sqrt{a}.

Proof: We recursively construct the sequence of b 's.
Since a is a quadratic residue of p, there is a b_{1} so that $a \equiv b_{1}^{2}$ $(\bmod p)$.

Suppose we have found $b_{1}, b_{2}, \ldots, b_{m}$ as in the theorem.
Consider $b_{m}+k p^{m}$, which is $\equiv b_{m}\left(\bmod p^{m}\right)$ for any choice of k.
Moreover

$$
\begin{aligned}
\left(b_{m}+k p^{m}\right)^{2} & =b_{m}^{2}+2 b_{m} k p^{m}+k^{2} p^{2 m} \\
& \equiv b_{m}^{2}+2 b_{m} k p^{m}\left(\bmod p^{m+1}\right) \\
& \equiv a+\ell p^{m}+2 b_{m} k p^{m}\left(\bmod p^{m+1}\right) \\
& \equiv a+\left(\ell+2 b_{m} k\right) p^{m}\left(\bmod p^{m+1}\right)
\end{aligned}
$$

We need to choose k so that $p \mid \ell+2 b_{m} k$, i.e. $2 b_{m} k \equiv-\ell(\bmod p)$.
$2 b_{m} k \equiv-\ell(\bmod p)$ is a linear congruence in the variable k.

Since $p \nmid 2 b_{m}$, we have $\left(2 b_{m}, p\right)=1$, which means the congruence has a unique solution $(\bmod p)$.

Choose any element k of the solution set and define $b_{m+1}=b_{m}+k p^{m}$. Then b_{m+1} has the desired properties.

Continuing this process indefinitely yields the sought after sequence.

Example

Example

Show that -1 is a square $(\bmod 625)$ and find its two square roots.
We have

$$
\left(\frac{-1}{5}\right)=(-1)^{(5-1) / 2}=(-1)^{2}=1
$$

Hence -1 is a square $\left(\bmod 5^{m}\right)$ for all $m \geq 1$.
To find its square roots we implement the algorithm in the proof.
Since $-1 \equiv 4(\bmod 5)$, clearly $b_{1}=2$. And since $2^{2}=-1+1 \cdot 5$, $\ell=1$. So $b_{2}=b_{1}+5 k$ where
$2 b_{1} k \equiv-\ell(\bmod 5) \Rightarrow 4 k \equiv-1(\bmod 5) \Rightarrow k \equiv 1(\bmod 5)$,
i.e. $b_{2}=7$.

Now $b_{2}^{2}=-1+2 \cdot 5^{2}$ so that $\ell=2$. So we need to solve
$2 b_{2} k \equiv-\ell(\bmod 5) \Rightarrow 4 k \equiv-2(\bmod 5) \Rightarrow k \equiv 2(\bmod 5)$,
and $b_{3}=b_{2}+5^{2} k=57$.
Finally, $b_{3}^{2}=-1+26 \cdot 5^{3}$ yields $\ell=26$ and we solve for k :
$2 b_{3} k \equiv-\ell(\bmod 5) \Rightarrow 4 k \equiv-1(\bmod 5) \Rightarrow k \equiv 1(\bmod 5)$.
Thus $b_{4}=b_{3}+5^{3} k=182$.
Therefore the two square roots of $-1(\bmod 625)$ are

$$
\pm 182(\bmod 625)
$$

Gauss' Lemma

Let's finally start heading toward the Law of Quadratic Reciprocity. Our first auxiliary result is the following.

Lemma (Gauss' Lemma)

Let p be an odd prime and suppose that $p \nmid a$. For each

$$
r \in\left\{a, 2 a, 3 a, \ldots, \frac{p-1}{2} a\right\}
$$

choose the unique $s_{r} \in\left\{-\frac{p-1}{2},-\frac{p-3}{2}, \ldots,-1,1,2, \ldots, \frac{p-1}{2}\right\}$ so that $r \equiv s_{r}(\bmod p)$. Then

$$
\left(\frac{a}{p}\right)=(-1)^{\nu}
$$

where ν is the number of negative values of s_{r}.

Proof of Gauss' Lemma

$$
\text { Let } I_{p}=\left\{-\frac{p-1}{2},-\frac{p-3}{2}, \ldots,-1,1,2, \ldots, \frac{p-1}{2}\right\} \text {. }
$$

Note that if $s \neq t \in I_{p}$ then:

- $(s, p)=(t, p)=1$;
- $0<|s-t| \leq p-1<p \Rightarrow p \nmid s-t \Rightarrow s \not \equiv t(\bmod p)$;
- $\left|I_{p}\right|=p-1=\varphi(p)$.

Therefore the map

$$
\begin{aligned}
& I_{p} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\times} \\
& s \mapsto s+p \mathbb{Z}
\end{aligned}
$$

is a bijection and s_{r} is well-defined.

Suppose $s_{r}=-s_{r^{\prime}}$. Then $r \equiv-r^{\prime}(\bmod p)$.
Thus ai $\equiv-a j(\bmod p)$ for some $1 \leq i, j \leq \frac{p-1}{2}$.
Since $(a, p)=1$, we can cancel it to obtain $i \equiv-j(\bmod p)$ or

$$
i+j \equiv 0(\bmod p) \Rightarrow p \mid i+j
$$

But $0<i+j<p-1$, so this is impossible.
Therefore $\left\{s_{r}\right\}$ cannot contain both s and $-s$ for any $s \in I_{p}$.
It follows that

$$
\left\{s_{r}\right\}=\left\{\epsilon_{1} \cdot 1, \epsilon_{2} \cdot 2, \epsilon_{3} \cdot 3, \ldots, \epsilon_{\frac{p-1}{2}} \cdot \frac{p-1}{2}\right\}
$$

where each $\epsilon_{i} \in\{ \pm 1\}$.

Now multiply together all of the r 's and s_{r} 's:

$$
\underbrace{a^{(p-1) / 2}\left(\frac{p-1}{2}\right)!}_{\text {the } r \text { 's }} \equiv \underbrace{\epsilon_{1} \epsilon_{2} \cdots \epsilon_{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!}_{\text {the } s_{r} \text { 's }}(\bmod p)
$$

By an earlier theorem we therefore have

$$
\left(\frac{a}{p}\right) \equiv(-1)^{\nu}(\bmod p) \Rightarrow\left(\frac{a}{p}\right)=(-1)^{\nu}
$$

since both sides belong to $\{ \pm 1\}$ and p is odd.

Example

Consider $p=11$ and $a=7$. We have $\frac{p-1}{2}=5$ and

$$
\begin{aligned}
7 & \equiv-4(\bmod 11), \\
2 \cdot 7 & \equiv 3(\bmod 11), \\
3 \cdot 7 & \equiv-1(\bmod 11), \\
4 \cdot 7 & \equiv-5(\bmod 11), \\
5 \cdot 7 & \equiv 2(\bmod 11) .
\end{aligned}
$$

Therefore, by Gauss' Lemma,

$$
\left(\frac{7}{11}\right)=(-1)^{3}=-1
$$

and 7 is a quadratic nonresidue $(\bmod 11)$.

Remark

Let $r \in\left\{a, 2 a, 3 a, \ldots, \frac{p-1}{2} a\right\}$. Use the Division Algorithm to write

$$
r=q p+r^{\prime}, \quad 0 \leq r^{\prime}<p
$$

Since $r \equiv r^{\prime}(\bmod p)$, the uniqueness of s_{r} implies:

- If $r^{\prime}<\frac{p}{2}$, then $s_{r}=r^{\prime}$.
- If $r^{\prime}>\frac{p}{2}$, then $-\frac{p}{2}<r^{\prime}-p<0$ and $r \equiv r^{\prime}-p(\bmod p)$.

Hence $s_{r}=r^{\prime}-p$.
It follows that ν in Gauss' Lemma is the number of r^{\prime} that exceed $p / 2$.

This alternate characterization of ν can sometimes be useful.

Quadratic Reciprocity, Second Supplement: $a=2$

We can now prove the second piece of the Law of Quadratic Reciprocity.

Theorem (Quadratic Reciprocity, Second Supplement)

Let p be an odd prime. Then

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}= \begin{cases}1 & \text { if } p \equiv \pm 1(\bmod 8), \\ -1 & \text { if } p \equiv \pm 3(\bmod 8) .\end{cases}
$$

Proof. According to the preceding remark, we need to count how often the remainder $(\bmod p)$ in the set

$$
\{2,4,6,8, \ldots, p-1\}
$$

exceeds $p / 2$.

Since these numbers are already remainders, we are really asking:
How many even numbers are between $\frac{p}{2}$ and $p-1$?
Since the least integer greater than $\frac{p}{2}$ is $\frac{p+1}{2}$, there are two cases.
Case 1. $\frac{p+1}{2}$ is odd, i.e. $p+1 \not \equiv 0(\bmod 4) \Leftrightarrow p \equiv 1(\bmod 4)$. In this case exactly half the numbers from $\frac{p+1}{2}$ to $p-1$ are even. The evens therefore number

$$
\frac{p-1-\frac{p+1}{2}+1}{2}=\frac{p-1}{4} .
$$

Note that $p \equiv 1(\bmod 4) \Rightarrow \frac{p+1}{2}$ is odd. Thus, according to Gauss' Lemma

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p-1}{4}}=\left((-1)^{\frac{p+1}{2}}\right)^{\frac{p-1}{4}}=(-1)^{\frac{p^{2}-1}{8}} .
$$

Case 2. $\frac{p+1}{2}$ is even, i.e. $p+1 \equiv 0(\bmod 4) \Leftrightarrow p \equiv 3(\bmod 4)$. In this case exactly half the numbers from $\frac{p+3}{2}$ (odd) to $p-1$ are even, together with $\frac{p+1}{2}$.

So the number of evens is

$$
1+\frac{p-1-\frac{p+3}{2}+1}{2}=1+\frac{p-3}{4}=\frac{p+1}{4} .
$$

In this case $\frac{p-1}{2}$ is odd, so that Gauss' Lemma gives

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p+1}{4}}=\left((-1)^{\frac{p-1}{2}}\right)^{\frac{p+1}{4}}=(-1)^{\frac{p^{2}-1}{8}} .
$$

The congruence based cases follow directly from this (common) formula for $\left(\frac{2}{p}\right)$.

