
The Legendre Symbol (Z/pZ)× to (Z/pmZ)× Quadratic Reciprocity The Second Supplement

The Legendre Symbol

R. C. Daileda

Trinity University

Number Theory

Daileda The Legendre Symbol



The Legendre Symbol (Z/pZ)× to (Z/pmZ)× Quadratic Reciprocity The Second Supplement

Definitions

Given an odd prime p and a ∈ Z with p - a, we say a is a quadratic
residue of p if a ≡ b2 (mod p) for some b.

Otherwise a is a quadratic nonresidue.

The Legendre symbol of a at p is(
a

p

)
=

{
1 if a is a quadratic residue of p,

−1 otherwise.

(
a

p

)
is clearly p-periodic in a. Thus we can view

(
·
p

)
: (Z/pZ)× → {±1}.
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Euler’s criterion immediately implies the next result.

Theorem

Let p be an odd prime, p - a. Then(
a

p

)
≡ a(p−1)/2 (mod p).

We can use this theorem to prove the following important fact.

Theorem

The Legendre symbol is completely multiplicative and induces a
surjective homomorphism(

·
p

)
: (Z/pZ)× → {±1}.
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Proof.

We have already seen that exactly half of the elements of (Z/pZ)×

are squares a.k.a. quadratic residues.

Therefore
(
·
p

)
is surjective.

Let a, b ∈ Z be coprime to p. Then so is ab and(
ab

p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡

(
a

p

)(
b

p

)
(mod p).

Because the values of
(
·
p

)
belong to {±1},(

ab

p

)
−
(
a

p

)(
b

p

)
= 0,±2.

But the left-hand side is divisible by the odd prime p, so ±2 are
impossible. This proves the result.
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Quadratic Reciprocity, First Supplement: a = −1

When a = −1, the first theorem tells us that(
−1

p

)
≡ (−1)(p−1)/2 (mod p). (1)

Both sides of the congruence belong to {±1}.

Because p is odd, 1 6≡ −1(mod p).

Hence (1) must actually be an equality.

Theorem (Quadratic Reciprocity, First Supplement)

Let p be an odd prime. Then(
−1

p

)
= (−1)(p−1)/2.
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Reduction to Prime Argument

Given a coprime to p, write a = ε
∏

i q
ni
i with qi 6= p distinct

primes, ε ∈ {±1}.

According to the preceding theorem(
a

p

)
=

(
ε

p

)∏
i

(
qi
p

)ni

=

(
ε

p

) ∏
i

ni odd

(
qi
p

)
.

The First Supplement evaluates
(
ε
p

)
. The Second Supplement will

evaluate
(
2
p

)
.

We are therefore reduced to evaluating
(
q
p

)
where q 6= p is an odd

prime. This is the subject of the Law of Quadratic Reciprocity.
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Back to (Z/pmZ)×

Let a ∈ Z be coprime to p. It turns out that
(

a
p

)
controls whether

or not a is a square (mod pm) for all m ∈ N!

Theorem

Suppose
(

a
p

)
= 1. Then there is a sequence of integers

b1, b2, b3, . . . so that:

bm+1 ≡ bm (mod pm) for all m ≥ 1;

b2m ≡ a (mod pm) for all m ≥ 1.

In particular, a + pmZ ∈ (Z/pmZ)× is a square for all m ≥ 1.

Remark: These conditions imply that the sequence {bm}∞m=1

converges in the ring Zp of p-adic integers to
√
a.
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Proof: We recursively construct the sequence of b’s.

Since a is a quadratic residue of p, there is a b1 so that a ≡ b21
(mod p).

Suppose we have found b1, b2, . . . , bm as in the theorem.

Consider bm + kpm, which is ≡ bm (mod pm) for any choice of k .

Moreover

(bm + kpm)2 = b2m + 2bmkp
m + k2p2m

≡ b2m + 2bmkp
m (mod pm+1)

≡ a + `pm + 2bmkp
m (mod pm+1)

≡ a + (`+ 2bmk)pm (mod pm+1).

We need to choose k so that p|`+ 2bmk, i.e. 2bmk ≡ −`(mod p).
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2bmk ≡ −`(mod p) is a linear congruence in the variable k.

Since p - 2bm, we have (2bm, p) = 1, which means the congruence
has a unique solution (mod p).

Choose any element k of the solution set and define
bm+1 = bm + kpm. Then bm+1 has the desired properties.

Continuing this process indefinitely yields the sought after
sequence. .
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Example

Example

Show that −1 is a square (mod 625) and find its two square roots.

We have (
−1

5

)
= (−1)(5−1)/2 = (−1)2 = 1.

Hence −1 is a square (mod 5m) for all m ≥ 1.

To find its square roots we implement the algorithm in the proof.

Since −1 ≡ 4(mod 5), clearly b1 = 2. And since 22 = −1 + 1 · 5,
` = 1. So b2 = b1 + 5k where

2b1k ≡ −` (mod 5) ⇒ 4k ≡ −1 (mod 5) ⇒ k ≡ 1 (mod 5),

i.e. b2 = 7.
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Now b22 = −1 + 2 · 52 so that ` = 2. So we need to solve

2b2k ≡ −` (mod 5) ⇒ 4k ≡ −2 (mod 5) ⇒ k ≡ 2 (mod 5),

and b3 = b2 + 52k = 57.

Finally, b23 = −1 + 26 · 53 yields ` = 26 and we solve for k:

2b3k ≡ −` (mod 5) ⇒ 4k ≡ −1 (mod 5) ⇒ k ≡ 1 (mod 5).

Thus b4 = b3 + 53k = 182.

Therefore the two square roots of −1(mod 625) are

±182 (mod 625) .
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Gauss’ Lemma

Let’s finally start heading toward the Law of Quadratic Reciprocity.
Our first auxiliary result is the following.

Lemma (Gauss’ Lemma)

Let p be an odd prime and suppose that p - a. For each

r ∈
{
a, 2a, 3a, . . . ,

p − 1

2
a

}
choose the unique sr ∈

{
−p−1

2 ,−p−3
2 , . . . ,−1, 1, 2, . . . , p−12

}
so

that r ≡ sr (mod p). Then(
a

p

)
= (−1)ν ,

where ν is the number of negative values of sr .
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Proof of Gauss’ Lemma

Let Ip =
{
−p−1

2 ,−p−3
2 , . . . ,−1, 1, 2, . . . , p−12

}
.

Note that if s 6= t ∈ Ip then:

(s, p) = (t, p) = 1;

0 < |s − t| ≤ p − 1 < p ⇒ p - s − t ⇒ s 6≡ t (mod p);

|Ip| = p − 1 = ϕ(p).

Therefore the map

Ip → (Z/pZ)×

s 7→ s + pZ

is a bijection and sr is well-defined.
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Suppose sr = −sr ′ . Then r ≡ −r ′ (mod p).

Thus ai ≡ −aj (mod p) for some 1 ≤ i , j ≤ p−1
2 .

Since (a, p) = 1, we can cancel it to obtain i ≡ −j (mod p) or

i + j ≡ 0 (mod p) ⇒ p|i + j .

But 0 < i + j < p − 1, so this is impossible.

Therefore {sr} cannot contain both s and −s for any s ∈ Ip.

It follows that

{sr} =

{
ε1 · 1, ε2 · 2, ε3 · 3, . . . , ε p−1

2
· p − 1

2

}
where each εi ∈ {±1}.
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Now multiply together all of the r ’s and sr ’s:

a(p−1)/2
(
p − 1

2

)
!︸ ︷︷ ︸

the r ’s

≡ ε1ε2 · · · ε p−1
2

(
p − 1

2

)
!︸ ︷︷ ︸

the sr ’s

(mod p)

By an earlier theorem we therefore have(
a

p

)
≡ (−1)ν (mod p) ⇒

(
a

p

)
= (−1)ν

since both sides belong to {±1} and p is odd.
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Example

Consider p = 11 and a = 7. We have p−1
2 = 5 and

7 ≡ −4 (mod 11),

2 · 7 ≡ 3 (mod 11),

3 · 7 ≡ −1 (mod 11),

4 · 7 ≡ −5 (mod 11),

5 · 7 ≡ 2 (mod 11).

Therefore, by Gauss’ Lemma,(
7

11

)
= (−1)3 = −1,

and 7 is a quadratic nonresidue (mod 11).
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Remark

Let r ∈
{
a, 2a, 3a, . . . , p−12 a

}
. Use the Division Algorithm to write

r = qp + r ′, 0 ≤ r ′ < p.

Since r ≡ r ′ (mod p), the uniqueness of sr implies:

If r ′ < p
2 , then sr = r ′.

If r ′ > p
2 , then −p

2 < r ′ − p < 0 and r ≡ r ′ − p (mod p).

Hence sr = r ′ − p.

It follows that ν in Gauss’ Lemma is the number of r ′ that exceed
p/2.

This alternate characterization of ν can sometimes be useful.
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Quadratic Reciprocity, Second Supplement: a = 2

We can now prove the second piece of the Law of Quadratic
Reciprocity.

Theorem (Quadratic Reciprocity, Second Supplement)

Let p be an odd prime. Then(
2

p

)
= (−1)

p2−1
8 =

{
1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8).

Proof. According to the preceding remark, we need to count how
often the remainder (mod p) in the set

{2, 4, 6, 8, . . . , p − 1}

exceeds p/2.
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Since these numbers are already remainders, we are really asking:

How many even numbers are between p
2 and p − 1?

Since the least integer greater than p
2 is p+1

2 , there are two cases.

Case 1. p+1
2 is odd, i.e. p + 1 6≡ 0(mod 4) ⇔ p ≡ 1(mod 4).

In this case exactly half the numbers from p+1
2 to p − 1 are even.

The evens therefore number

p − 1− p+1
2 + 1

2
=

p − 1

4
.

Note that p ≡ 1(mod 4) ⇒ p+1
2 is odd. Thus, according to

Gauss’ Lemma(
2

p

)
= (−1)

p−1
4 = ((−1)

p+1
2 )

p−1
4 = (−1)

p2−1
8 .
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Case 2. p+1
2 is even, i.e. p + 1 ≡ 0(mod 4) ⇔ p ≡ 3(mod 4).

In this case exactly half the numbers from p+3
2 (odd) to p − 1 are

even, together with p+1
2 .

So the number of evens is

1 +
p − 1− p+3

2 + 1

2
= 1 +

p − 3

4
=

p + 1

4
.

In this case p−1
2 is odd, so that Gauss’ Lemma gives(

2

p

)
= (−1)

p+1
4 = ((−1)

p−1
2 )

p+1
4 = (−1)

p2−1
8 .

The congruence based cases follow directly from this (common)

formula for
(
2
p

)
.
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