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Recall

Goal: Evaluate the Legendre symbol
(

a
p

)
, where p is an odd

prime and p - a, and thereby determine if a is a quadratic residue
of p.

Reduction: Using the multiplicative property of
(
·
p

)
, we must

be able to evaluate
(
q
p

)
for primes q 6= p.

The Law of Quadratic Reciprocity (which we have yet to state) will
enable us to do the latter efficiently.

Number theorists love Quadratic Reciprocity: there are over 100
different proofs.

Gauss gave the first proof, in 1801. We will give one due to
Eisenstein, one of Gauss’ students.
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Preliminary Lemma

Our main ingredient will be a reformulation of Gauss’ Lemma.

Lemma (Eisenstein’s Lemma)

Let p be an odd prime and a ∈ Z odd with p - a. Let

Ra =

{
a, 2a, 3a, . . . ,

p − 1

2
a

}
.

Then (
a

p

)
= (−1)

∑
r∈Ra

⌊
r
p

⌋
.

Proof. Recall Gauss’ Lemma: for each r ∈ Ra there is a unique

−p−1
2 ≤ sr ≤ p−1

2 so that r ≡ sr (mod p), and
(

a
p

)
= (−1)ν

where ν is the number of sr < 0.
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Moreover, the proof of Gauss’ Lemma showed that, up to ν

negative signs, {sr | r ∈ Ra} is
{

1, 2, 3, . . . , p−12

}
.

To prove the current lemma it suffices to show that∑
r∈Ra

⌊
r

p

⌋
≡ ν (mod 2).

Begin by writing

r = qrp + rp, 0 ≤ rp < p

for r ∈ Ra. Notice that

r

p
= qr +

rp
p
, 0 ≤ rp

p
< 1 ⇒

⌊
r

p

⌋
= qr ⇒ r =

⌊
r

p

⌋
p + rp.
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We have

rp <
p
2 ⇒ rp = sr > 0;

rp >
p
2 ⇒ −p

2 < rp − p < 0 and r =
(⌊

r
p

⌋
+ 1
)
p + (rp − p)

⇒ rp − p = sr < 0.

Summing over Ra we obtain∑
r∈Ra

r = p
∑
r∈Ra

⌊
r

p

⌋
+
∑
r∈Ra
sr>0

sr +
∑
r∈Ra
sr<0

(p + sr )

a

(p−1)/2∑
k=1

k = p
∑
r∈Ra

⌊
r

p

⌋
+
∑
r∈Ra
sr>0

sr +
∑
r∈Ra
sr<0

sr + νp.
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According to the proof of Gauss’ Lemma

(p−1)/2∑
k=1

k =
∑
r∈Ra
sr>0

sr −
∑
r∈Ra
sr<0

sr .

If we add this equation to the previous one we find that

(a + 1)

(p−1)/2∑
k=1

k = p
∑
r∈Ra

⌊
r

p

⌋
+ 2

∑
r∈Ra
sr>0

sr + νp.

Since a and p are both odd, if we consider this equation modulo 2
we get

0 ≡
∑
r∈Ra

⌊
r

p

⌋
+ ν (mod 2),

which is equivalent to what we wanted to show.
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Example

Remark: This result simply expresses
(

a
p

)
in terms of the

quotients obtained when the elements of Ra are divided by p, as
opposed to Gauss’ Lemma which uses the remainders.

Example

Use the lemma above to evaluate
(

7
13

)
.

We have R7 = {7, 14, 21, 28, 35, 42} and

7 = 0 · 13 + 7,

14 = 1 · 13 + 1,

21 = 1 · 13 + 8,

28 = 2 · 13 + 2,

35 = 2 · 13 + 9,

42 = 3 · 13 + 3.
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Quadratic Reciprocity

Hence (
7

13

)
= (−1)0+1+1+2+2+3 = −1

so that 7 is a quadratic nonresidue of 13.
We are finally ready to state and prove our main result.

Theorem (The Law of Quadratic Reciprocity)

Let p and q be odd primes. Then(
p

q

)
= (−1)

p−1
2
· q−1

2

(
q

p

)
.

Proof. Since
(
q
p

)
= ±1, it is its own inverse. Hence it suffices to

prove that (
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .
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We will achieve this by counting the points of N× N (lattice
points) in the rectangle Rp,q = [0, p/2]× [0, q/2] in two ways.

Because there are p−1
2 naturals in the first interval and q−1

2 in the
second, there are

p − 1

2
· q − 1

2

lattice points in Rp,q.

Now consider the diagonal D of Rp,q, the line y = q
p x . Note that

no lattice point in Rp,q lies on D (why?).

Thus #{lattice points in Rp,q} is

#{lattice points below D}+ #{lattice points above D}.
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We count points below D by columns, and points above D by rows.

Given 1 ≤ k ≤ p−1
2 , the lattice points above (k , 0) and below D

have the form (k, `) where 1 ≤ ` ≤ bqkp c. For example:

Here p = 29, q = 17, k = 11. The orange point is (11, 11q/p),

and the number of green points is
⌊
11q
p

⌋
.
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Hence

#{lattice points below D} =

(p−1)/2∑
k=1

⌊
qk

p

⌋
.

Likewise, counting lattice points in rows above D gives

#{lattice points above D} =

(q−1)/2∑
k=1

⌊
pk

q

⌋
.

Therefore, according to Eisenstein’s Lemma, we have

(−1)
p−1
2
· q−1

2 = (−1)
∑(p−1)/2

k=1

⌊
qk
p

⌋
+
∑(q−1)/2

k=1

⌊
pk
q

⌋

= (−1)
∑(p−1)/2

k=1

⌊
qk
p

⌋
(−1)

∑(q−1)/2
k=1

⌊
pk
q

⌋

=

(
q

p

)(
p

q

)
.

Daileda Quadratic Reciprocity



Introduction Eisenstein’s Lemma Quadratic Reciprocity Examples

Remark

Notice that if p ≡ 1(mod 4) or q ≡ 1(mod 4), then the exponent
p−1
2 ·

q−1
2 is even.

It is odd if and only if p ≡ q ≡ 3(mod 4).

We can therefore state the Law of Quadratic Reciprocity as

(
p

q

)
=



(
q

p

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4),

−
(
q

p

)
if p ≡ q ≡ 3 (mod 4).
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Example 1

Let’s compute
(−1234

4567

)
using quadratic reciprocity. First of all(

−1234

4567

)
=

(
−2 · 617

4567

)
=

(
−1

4567

)(
2

4567

)(
617

4567

)
= (−1) · (1) · (1)

(
4567

617

)
,

where we have used the facts that 4567 ≡ −1(mod 8) and 617 ≡ 1
(mod 4) to evaluate the powers of −1.

We have already observed that
(

a
p

)
is p-periodic in a. We can

therefore reduce 4567 modulo 617.
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Hence (
−1234

4567

)
= −

(
248

617

)
= −

(
8 · 31

617

)
= −

(
2

617

)(
31

617

)
= −

(
617

31

)
= −

(
28

31

)
= −

(
4 · 7
31

)
=

(
31

7

)
=

(
3

7

)
= −

(
7

3

)
= −

(
1

3

)
= −1 .

since 617 ≡ 1(mod 8) and 31 ≡ 7 ≡ 3(mod 4).

Therefore −1234 is a quadratic nonresidue of 4567.
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Example 2

Determine the primes p for which 7 is a quadratic residue of p.

We want

1 =

(
7

p

)
= (−1)

p−1
2

(p
7

)
which happens if and only if

(−1)
p−1
2 =

(p
7

)
= 1 or (−1)

p−1
2 =

(p
7

)
= −1.

By direct computation we find these to be equivalent to

p ≡ 1 (mod 4), p ≡ 3 (mod 4),
or

p ≡ 1, 2, 4 (mod 7); p ≡ 3, 5, 6 (mod 7).

The CRT yields the equivalents p ≡ ±1,±3,±9(mod 28) .
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