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1 Repeated Squaring

Consider the problem of finding the remainder when am is divided by n, where m and n are
both is “large.” If we assume that (a, n) = 1, Euler’s theorem allows us to reduce m modulo
ϕ(n). But this still leaves us with some (potential) problems:

1. ϕ(n) will still be large as well, so the reduced exponent as well as the order of a modulo
n might be too big to handle by previous techniques (e.g. with a hand calculator).

2. Without knowledge of the prime factorization of n, ϕ(n) can be very hard to compute
for large n.

3. If (a, n) > 1, Euler’s theorem doesn’t apply so we can’t necessarily reduce the exponent
in any obvious way.

Here we describe a procedure for finding the remainder when am is divided by n that is
extremely efficient in all situations. First we provide a bit of motivation.

Begin by expressing m in binary1:

m =
N∑
j=0

bj2
j, bj ∈ {0, 1} and bN = 1.

Notice that

am = a
∑N

j=0 bj2
j

=
N∏
j=0

abj2
j

=
N∏
j=0

(a2
j

)bj

and that

a2
j

=
(
a2

j−1
)2

=

((
a2

j−2
)2)2

= · · · =
(((

a2
)2)2 · · ·)2

︸ ︷︷ ︸
j squares

.

So we can compute am by repeatedly squaring a and then multiplying together the powers
for which bj = 1. If we perform these operations pairwise, reducing modulo n at each stage,
we will never need to perform modular arithmetic with a number larger than n2, no matter
how large m is! We make this procedure explicit in the algorithm described below.

1We will discuss how this is done shortly.
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Modular Exponentiation by Repeated Squaring. Given m,n ∈ N and a ∈ Z, the
following algorithm returns the remainder when am is divided by n.

Step 1. Express m in binary:

m =
N∑
j=0

bj2
j,

where bj ∈ {0, 1} for all j and bN = 1.

Step 2. Let a = q0n + s0 with 0 ≤ s0 < n and, for 1 ≤ i ≤ N , define si through
the equation s2i−1 = qin + si with 0 ≤ si < n. [Repeatedly square a and
reduce modulo n at each stage.]

Step 3. Let P0 = sb00 and, for 1 ≤ i ≤ N , define Pi through the equation Pi−1s
bi
i =

`in + Pi with 0 ≤ Pi < n. [Construct the partial power one factor at a
time and reduce modulo n at each stage.]

Step 4. Return PN .

Proof. According to Step 3 we have

PN ≡ PN−1s
bN
N (mod n)

≡ PN−2s
bN−1

N−1 s
bN
N (mod n)

≡ PN−3s
bN−2

N−2 s
bN−1

N−1 s
bN
N (mod n)

...

≡ sb00 s
b1
1 s

b2
2 · · · s

bN
N (mod n)

and by Step 2

s1 ≡ s20 (mod n),

s2 ≡ s21 ≡ s2
2

0 (mod n),

s3 ≡ s22 ≡ s2
3

0 (mod n),

...

si ≡ s2
i

0 (mod n).

Hence, since a ≡ s0 (mod n),

PN ≡ sb00 s
b1
1 s

b2
2 · · · s

bN
N ≡ sb00 s

b1·2
0 sb2·2

2

0 · · · sbN ·2N
0 ≡ s

∑N
j=0 bj2

j

0 ≡ am (mod n).

As noted above, once we have reduced a modulo n, at no point in the algorithm will we
ever be dealing with a number larger than n2, regardless of the size of m. This is central
to the algorithm’s efficiency. The only other question to be addressed is how efficient base
conversions are. Before we touch on that, an example is in order.

Example 1. Find the remainder when 32112345 is divided by 54321.
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Since it is not difficult to see that 54321 = 3 ·19 ·953, it might not be a bad idea to reduce
the exponent modulo ϕ(54321) = 2 · 18 · 952 = 34272. But: (a) 12345 is already reduced
and (b) (321, 54321) = 3 so Euler’s theorem doesn’t apply anyway. So we simply apply the
Repeated Squaring algorithm without any preliminary simplification.

Maple returns the binary expansion of 12345 almost instantly:

1 + 23 + 24 + 25 + 212 + 213.

We now repeatedly square 321, reducing modulo 54321 at each stage:

3212 ≡ 48720 (mod 54321),

32122 ≡ 487202 ≡ 27984 (mod 54321),

32123 ≡ 279842 ≡ 12720 (mod 54321),

32124 ≡ 127202 ≡ 30462 (mod 54321),

32125 ≡ 304622 ≡ 22122 (mod 54321),

32126 ≡ 221222 ≡ 4995 (mod 54321),

32127 ≡ 49952 ≡ 16686 (mod 54321),

32128 ≡ 166862 ≡ 27471 (mod 54321),

32129 ≡ 274712 ≡ 28509 (mod 54321),

321210 ≡ 285092 ≡ 12279 (mod 54321),

321211 ≡ 122792 ≡ 33066 (mod 54321),

321212 ≡ 330662 ≡ 41589 (mod 54321),

321213 ≡ 415892 ≡ 9960 (mod 54321).

Finally we multiply together, a pair at a time, only those powers of 2 that occur in the
binary expansion of the exponent 12345:

321 · 32123 ≡ 321 · 12720 ≡ 9045 (mod 54321),

321 · 32123 · 32124 ≡ 9045 · 30462 ≡ 12678 (mod 54321),

321 · 32123 · 32124 · 32125 ≡ 12678 · 22122 ≡ 3393 (mod 54321),

321 · 32123 · 32124 · 32125 · 321212 ≡ 3393 · 41589 ≡ 39840 (mod 54321),

32112345 = 321 · 32123 · 32124 · 32125 · 321212 · 321213 ≡ 39840 · 9960 ≡ 45816 (mod 54321).

So that the remainder is 45816 . �

We can actually improve the efficiency of the Repeated Squaring algorithm by combining
Steps 2 and 3, computing the partial products Pi and repeated squares si simultaneously,
then discarding each si after we’ve used it, rather than store them all.
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Improved Modular Exponentiation by Repeated Squaring. Given m,n ∈ N and
a ∈ Z, the following algorithm returns the remainder when am is divided by n.

Step 1. Express m in binary:

m =
N∑
j=0

bj2
j,

where bj ∈ {0, 1} for all j and bN = 1.

Step 2. Let a = q0n + s0 and P0 = sb00 .

Step 3. For 1 ≤ i ≤ N , given si−1 and Pi−1, define si through the equation s2i−1 =

qin + si with 0 ≤ si < n and Pi through the equation Pi−1s
bi
i = `in + Pi

with 0 ≤ Pi < n. Discard si−1 and Pi−1.

Step 4. Return PN .

Proof. The proof is the same.

It is worth noting that, while tedious, all of the computations above could easily have
been implemented using only a four function calculator. The real advantage of the algorithm
can be seen, however, when it is implemented on a computer. For example, suppose we boost
the exponent of the preceding example to 123456789. It takes Maple (running on a 3.3 GHz
Intel i5 Mac) about 6 seconds to report that the remainder when 321123456789 is divided by
54321 is 37488. Whereas an implementation of the Repeated Squaring algorithm in Maple
(on the same computer) yields the same result almost instantaneously. Both SAGE and
PARI behave the same way automatically, i.e. are hard-coded to use (some variant of) the
Repeated Squaring algorithm for modular exponentiation.

2 Primality Tests Involving Exponentiation

Recall Fermat’s little theorem: if p is prime and (a, p) = 1, then ap−1 ≡ 1(mod p). Consider
the contrapositive: if there exists an a ∈ Z such that (a, p) = 1 and ap−1 6≡ 1(mod p), then
p is composite. Because, as we have just seen, modular exponentiation is quite efficient, this
will provide our first truly useful primality test.

Fermat Primality Test. Given an odd number n, the following algorithm either proves
that n is composite or returns a congruence of the form an−1 ≡ 1(mod n), (a, n) = 1.

Step 1. Randomly choose an integer 2 ≤ a < n.

Step 2. Use the EA to compute d = (a, n). If d > 1, we have a nontrivial factor
of n, so we terminate the algorithm and output “composite” (and d for
good measure).a

Step 3. Compute the remainder r when an−1 is divided by n (e.g. by using Re-
peated Squaring).

Step 4. If r 6= 1, output “composite.” If r = 1, output the congruence an−1 ≡ 1
(mod n).

aWe don’t really expect this to happen often.
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Remark 1.

• The Fermat test (as I’ve called it) is really a compositeness test. And since Fermat’s
little theorem isn’t a biconditional result, when the test fails we can’t conclude anything
concrete. It might be that n is prime, or n might actually be composite. Composite
numbers that satisfy an−1 ≡ 1(mod n) for some (a, n) = 1 are called pseudoprimes to
the base a.

• If an integer n fails the Fermat test frequently enough, we might start to believe it is
actually prime. However, there exist n that are pseudoprimes to every base (a, n) = 1.
Such n are called Carmichael numbers; the smallest is 561. Carmichael numbers are
what prevent the Fermat Primality Test from actually being a primality test! A long
standing open question was just how many Carmichael numbers exist. It was settled in
1994 by Erdös, Granville and Pomerance: there are infinitely many. D’oh!

• Except in the (exceedingly rare case) that d > 1 in Step 2, even in the Fermat test
gives an affirmative result, it doesn’t provide any information on what the factors of n
actually are.

H

Example 2. Prove that

n =21954697995095410853358122600332847218651088538566

91125738388026532740045150707008069155261775991153

(100 digits) is composite.
Using the (Improved) Repeated Squaring algorithm we find (almost instantly) that

2n−1 ≡81841814842480266898388843962502616548343355500389

3903138438791769632169252168970286454677618358039 (mod n).

Since we did not get 1, n must be composite. As noted above, we do not have any information
as to how n actually factors. �

Appendix: Base B Representations of Natural Numbers

As an aside, we now address the issue of the expression of natural numbers in different bases.
Let B ≥ 2 be the given base and let DB = {0, 1, 2, . . . , B − 1} denote the set of base B
“digits.” The following result is often tacitly assumed, but rarely proven.

Theorem 1. Let n ∈ N. Then n has a unique base B expansion

n =
N∑
j=0

djB
j, N ∈ N0, dj ∈ DB, dN 6= 0. (1)

Proof. Existence. We induct on n. Clearly 1·B0 is a base B expansion of n = 1, since B ≥ 2.
Now assume that for some n ≥ 1, all natural numbers k ≤ n have base B expansions. Let
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N ∈ N0 satisfy BN ≤ n+ 1 < BN+1 and use the division algorithm to write n+ 1 = qBN + r
with 0 ≤ r < BN . If q ≥ B, then BN+1 ≤ qBN ≤ qBN + r = n + 1, a contradiction.
Therefore q ∈ DB. And if q = 0, then n + 1 = r < BN , another contradiction. So if we set
dN = q then dN ∈ DB and dN 6= 0.

If r = 0 then n + 1 = qNB
N is a base B expansion. Otherwise, 0 < r < BN implies

0 < r ≤ n so that r has a base B expansion by the inductive hypothesis. If we write

r =
M∑
j=0

djB
j

with M ∈ N0, dj ∈ DB, and dM 6= 0, then since n + 1 = dNq
N + r it suffices to show that

M < N . But since dM ≥ 1, we see that BM ≤ r < BN , which implies M < N . Thus

n + 1 =
M∑
j=0

djB
j + dNB

N

is a base B expansion for n + 1 and the general existence is established by induction.
Uniqueness. We make the following claim: if aj ∈ Z satisfy |aj| < B and m ∈ N0, then

m∑
j=0

ajB
j = 0 ⇒ aj = 0 for all j.

We prove the claim by induction on m, the case m = 0 being trivial. So suppose it holds for
some m ≥ 0 and assume

m+1∑
j=0

ajB
j = 0

with |aj| < B. We then have

|am+1B
m+1| =

∣∣∣∣∣
m∑
j=0

ajB
j

∣∣∣∣∣ ≤ (B − 1)
m∑
j=0

Bj = Bm+1 − 1 < Bm+1

which implies |am+1| < 1. As am+1 is an integer this can only occur if am+1 = 0. But the
our assumption becomes

m∑
j=0

ajB
j = 0

which implies aj = 0 for all other j as well by the inductive hypothesis. So the result holds
for m + 1 if it holds for m and we’ve established the claim.

Uniqueness of base B expansions is now easy to establish. If

n =
N∑
j=0

djB
j, N ∈ N0, dj ∈ DB, dN 6= 0

first note that since dN 6= 0

BN ≤ n ≤ (B − 1)
N∑
j=0

Bj = BN+1 − 1 < BN+1
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that is N is uniquely determined by the condition

BN ≤ n < BN+1.

So any other base B expansion of N must have the form

n =
N∑
j=0

ejB
j, ej ∈ DB, eN 6= 0.

If we subtract these expansions and apply the claim we immediately conclude that dj = ej
for all j, as required.

Remark 2.

• The base B expansion (1) of n is rather cumbersome so we introduce the base B place-
value notation n = (dNdN−1 · · · d2d1d0)B. When B = 10 we omit the parentheses and
the subscript altogether.

• Although we are used to thinking of integers in terms of their base 10 (decimal) ex-
pansions, these are simply representations of the integers, not the integers themselves.
Integers are abstract entities and base B expansions simply give us a convenient way
to work with them.

• The existence portion of the proof actually gives and algorithm for finding the base B
expansion of n. First, find N so that BN ≤ n < BN+1. Perform the division algorithm:
n = qBN + r. Then q = dN . Now replace q with r and repeat. Continue until r ∈ DB,
at which point you’ve found d0.

H

Example 3. Find the binary (base 2) expansion of 3849.
Since 211 ≤ 3849 < 212, this is our starting point. And since the only digits are 0 and 1,

we simply subtract to find the remainder: 3849 − 211 = 1801. Now 210 ≤ 1801 < 211 and
1801− 210 = 777. Again 29 ≤ 777 < 210 and 777− 29 = 265. This time 28 ≤ 265 < 29 and
265− 28 = 9. Finally, 9 = 23 + 1 so we find that

3849 = 211 + 210 + 29 + 28 + 23 + 1 = (111100001001)2

�

Example 4. Find the ternary (base 3) expansion of 3849.
Now we have 37 ≤ 3849 < 3849 and the division algorithm yields 3849 = 1 · 37 + 1662.

Next 36 ≤ 1662 < 37 and 1662 = 2 · 36 + 204. Now 34 ≤ 204 < 35 and 204 = 2 · 34 + 42. At
this point we just proceed manually: 42 = 27 + 15 = 27 + 9 + 6 = 27 + 9 + 2 · 3. Thus

3849 = 37 + 2 · 36 + 2 · 34 + 33 + 32 + 2 · 3 = (12021120)3

�

Remark 3. Kummer’s theorem states that for m, n ∈ N0 satisfying m ≤ n, the exact power
of p dividing

(
n
m

)
is the number of carries when m is added to n −m in base p. Note that

this provides an alternate proof of the divisibility of the binomial coefficients
(
p
k

)
by p when

1 ≤ k ≤ p− 1. H
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