Euler Equations

R. C. Daileda

April 6, 2018

1 Change of Variables

An Euler equation is a homogeneous linear second order ODE of the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0, \quad x \neq 0 \tag{1}
\end{equation*}
$$

In order to find the general solution, we perform the change of variable ${ }^{1}$

$$
t=\log |x| .
$$

According to the chain rule

$$
y^{\prime}=\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=\frac{d y}{d t} \frac{1}{x} \Rightarrow x y^{\prime}=\frac{d y}{d t} .
$$

Differentiating both sides of this final equation with respect to x and using the chain rule again gives us
$y^{\prime}+x y^{\prime \prime}=\frac{d}{d x} \frac{d y}{d t}=\frac{d^{2} y}{d t^{2}} \frac{d t}{d x}=\frac{d^{2} y}{d t^{2}} \frac{1}{x} \Rightarrow x y^{\prime}+x^{2} y^{\prime \prime}=\frac{d^{2} y}{d t^{2}} \Rightarrow x^{2} y^{\prime \prime}=\frac{d^{2} y}{d t^{2}}-x y^{\prime}=\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}$.
From these computations it follows that our original ODE (1) becomes

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}+a \frac{d y}{d t}+b y=0 \Leftrightarrow \frac{d^{2} y}{d t^{2}}+(a-1) \frac{d y}{d t}+b y=0 . \tag{2}
\end{equation*}
$$

Notice that (2) is linear and homogeneous with constant coefficients and therefore can be solved by the standard technique involving the roots of its characteristic equation.

2 The Indicial Equation

We call the characteristic equation

$$
\begin{equation*}
r^{2}+(a-1) r+b=0 \tag{3}
\end{equation*}
$$

of (2) the indicial equation of (1). We will now use its roots to describe the solutions to (1). Case 1. (3) has two distinct real roots, $r_{1} \neq r_{2}$. In this case the solutions to (2) are given by

$$
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

[^0]Back substituting $t=\log |x|$ this becomes

$$
y=c_{1}|x|^{r_{1}}+c_{2}|x|^{r_{2}} \text {. }
$$

Case 2. (3) has one repeated real root r_{1}. In this situation we know the general solution to (2) to be

$$
y=e^{r_{1} t}\left(c_{1}+c_{2} t\right)
$$

Back substitution now gives

$$
y=|x|^{r_{1}}\left(c_{1}+c_{2} \log |x|\right) \text {. }
$$

Case 3. (3) has conjugate complex roots $\alpha \pm i \beta$ with $\beta \neq 0$. Now the general solution of (2) is

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Upon back substitution we arrive at the general solution to (1):

$$
y=|x|^{\alpha}\left(c_{1} \cos (\beta \log |x|)+c_{2} \sin (\beta \log |x|)\right) .
$$

3 Summary

We have proven the following result.
Theorem 1. The general solution to the Euler equation

$$
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0, \quad x \neq 0
$$

depends on the roots r_{1}, r_{2} of its indicial equation

$$
r^{2}+(a-1) r+b=0
$$

as follows.

1. If r_{1}, r_{2} are real and distinct (i.e. $(a-1)^{2}-4 b>0$), then

$$
y=c_{1}|x|^{r_{1}}+c_{2}|x|^{r_{2}} .
$$

2. If $r_{1}=r_{2}$ (i.e. $\left.(a-1)^{2}-4 b=0\right)$, then

$$
y=|x|^{r_{1}}\left(c_{1}+c_{2} \log |x|\right) .
$$

3. If $r_{1}, r_{2}=\alpha \pm i \beta$ with $\beta \neq 0$ (i.e. $(a-1)^{2}-4 b<0$), then

$$
y=|x|^{\alpha}\left(c_{1} \cos (\beta \log |x|)+c_{2} \sin (\beta \log |x|)\right)
$$

As a final remark we note that if we restrict the domain to $x>0$, the absolute values $|\cdot|$ become unnecessary.

[^0]: ${ }^{1}$ As usual in mathematical circles, log denotes the natural logarithm.

