
Math 3357 Spring 2018

Partial Differential Equations

First Exam

Solutions

1. Solve the initial value problem

∂u

∂x
+ (x− yx)

∂u

∂y
= 0, (x, y) ∈ (0,∞)× R,

u(0, y) = sin(y).

Solution 1: Because the PDE has the form

∂u

∂x
+ P (x, y)

∂u

∂y
= 0,

we may use the “näıve” method of characteristics. In this case we begin by solving

dy

dx
= x− yx, (1)

which is both linear and separable. We will demonstrate how to solve it as either type.
First treating (1) as linear we rewrite it as

dy

dx
+ xy = x (2)

and multiply by the integrating factor

µ(x) = exp

(∫
x dx

)
= ex

2/2

which reduces (2) to
d

dx
ex

2/2y = xex
2/2.

Integrating both sides we obtain∫
d

dx
ex

2/2y dx =

∫
xex

2/2 dx ⇒ ex
2/2y = ex

2/2 + C ⇒ y = 1 + Ce−x
2/2

⇒ C = ex
2/2(y − 1).

If we instead treat the characteristic ODE as separable we find that (the constant C is
not necessarily the same at every occurrence)

dy

1− y
= x dx ⇒

∫
dy

1− y
=

∫
x dx ⇒ − log |1− y| = x2

2
+ C ⇒

1

|1− y|
= Cex

2/2 (C > 0) ⇒ 1

1− y
= Cex

2/2 (C 6= 0) ⇒ C = ex
2/2(y − 1),



in agreement with the earlier computation.1

Hence, in either case, we find that the general solution to the PDE is

u(x, y) = f(ex
2/2(y − 1)).

Imposing the initial condition on this solution we find that

sin(y) = u(0, y) = f(y − 1) ⇒ sin(y + 1) = f((y + 1)− 1) = f(y)

so that the particular solution we seek is

u(x, y) = sin(ex
2/2(y − 1) + 1) .

Solution 2: Being quasi-linear, this PDE is automatically amenable to the “full strength”
version of the method of characteristics. We parametrize the initial curve as

x0(a) = 0, y0(a) = a, z0(a) = sin(a)

and use this to construct the system of characteristic ODEs:

dx

ds
= 1,

dy

ds
= x− yx, dz

ds
= 0,

x(0) = 0, y(0) = a, z(0) = sin(a).

The final equation implies that z is constant so that the initial condition z(0) = sin(a)
implies z = sin(a). Integrating the first equation gives x = s+C. The initial condition tells
us that 0 = x(0) = 0 + C so that C = 0 and x = s. This reduces th middle equation to

dy

ds
= s− ys,

which we solved above, obtaining C = es
2/2(y − 1). Before we solve for y we set s = 0 and

impose the initial condition: C = e0(y(0)− 1) = a− 1. Putting this back in the expression

for y and adding 1 to both sides yields a = 1 + es
2/2(y − 1). Since x = s we further obtain

a = 1 + ex
2/2(y − 1) and hence the solution is

u(x, y) = z = sin(a) = sin(1 + ex
2/2(y − 1)).

1It is tempting to stop at the end of the first line, set C = x2

2
+ log |1 − y| and take the general solution to be u(x, y) =

f
(

x2

2
+ log |1− y|

)
, but this isn’t sufficient for our purposes: such a solution isn’t defined when y = 1 whereas we are requiring

that our solution be defined for all y ∈ R. Even if we were to accept this as our general solution, because of the absolute value,
solving for f in the initial value condition sin(y) = f(log |1− y|) is somewhat subtle.



2. Solve the initial value problem

2x
∂u

∂x
+
∂u

∂y
= u, (x, y) ∈ R× (0,∞),

u(x, 0) = 3x.

Solution: Because u doesn’t appear in the coefficients on the LHS of the PDE, technically
we could apply the modified näıve method of characteristics to this problem. The solution
by this method, however, is rather elaborate. So we simply use the ordinary method of
characteristics. The initial curve is

x0(a) = a, y0(a) = 0, z0(a) = 3z,

so that the system of characteristic ODEs is

dx

ds
= 2x,

dy

ds
= 1,

dz

ds
= z,

x(0) = a, y(0) = 0, z(0) = 3a.

The first and final equations are exponential growth equations with solutions

x = ae2s, z = 3aes.

Ans, yes, that’s all the work you were expected to show. Integrating the middle equation
yields y = s + C which, when we impose y(0) = 0, becomes y = s. Solving for a in the
equation for x tells us that a = xe−2s so that z = 3aes = 3xe−2ses = 3xe−s = 3xe−y, since
s = y. Hence the solution to the initial value problem is

u(x, y) = 3xe−y.



3. When making the linear change of variables

α = ax+ by,

β = cx+ dy,

ad− bc 6= 0,

we have seen that the chain rule for a function u(x, y) leads to the formulae

uxx = a2uαα + 2acuαβ + c2uββ,

uyy = b2uαα + 2bduαβ + d2uββ,

uxy = abuαα + (ad+ bc)uαβ + cduββ.

a. Find values of a, b, c and d so that the linear change of variables above reduces the
PDE

uxx − 5uxy + 6uyy = 0 (3)

to
uαβ = 0.

Solution: Under the given substitution the PDE becomes

(a2 − 5ab+ 6b2)uαα + (2ac+ 5(ad+ bc) + 12bd)uαβ + (c2 − 5cd+ 6d2)uββ = 0.

Notice that

a2 − 5ab+ 6b2 = (a− 2b)(a− 3b) = 0 ⇐⇒ a = 2b or a = 3b.

So if we take a = 2 and b = 1 , the first of these equations is satisfied and the uαα
term drops out of the PDE. The uββ coefficient is identical with the uαα coefficient, just
with c and d replacing a and b. We therefore have the same conditions for it to vanish:
c = 2d or c = 3d. In order not to violate ad− bc 6= 0 we must use the second equation,

and c = 3 , d = 1 are convenient choices.2

It only remains to be sure that the uαβ coefficient is nonzero with these choices. It’s not
hard to show that if a = 2, b = 1, c = 3 and d = 1, then 2ac+ 5(ad+ bc) + 12bd = −1
so that our original PDE has now become

−uαβ = 0 ⇐⇒ uαβ = 0

as desired.
2These are not the only “correct” values of a, b, c and d. So long as a = 2b and c = 3d, or a = 3d and c = 2d we will have a

valid substitution that produces the desired result.



b. Use part a to show that the general solution to (3) is given by

u(x, y) = F (2x+ y) +G(3x+ y).

Solution: Using the change of variables α = 2x + y, β = 3x + y found in part a, we
know that the PDE becomes

uαβ = 0.

So we simply integrate twice:

uα =

∫
uαβ ∂β =

∫
0 ∂β = f(α),

u =

∫
uα ∂α =

∫
f(α) ∂α = F (α) +G(β),

where f is an arbitrary differentiable function, F is its antiderivative and G(β) is the
“constant” of integration with respect to α. Back substituting for α and β we obtain

u(x, y) = F (2x+ y) +G(3x+ y).



4. Recall Laplace’s equation
∂2u

∂x2
+
∂2u

∂y2
= 0.

a. Show that u(x, y) =
x

x2 + y2
is a solution to Laplace’s equation.

Solution: We simply compute the necessary second partial derivatives.

ux =
(x2 + y2) · 1− x · 2x

(x+y2)2
=

y2 − x2

(x2 + y2)2

uxx =
(x2 + y2)2(−2x)− (y2 − x2)(2)(x2 + y2)(2x)

(x2 + y2)4
=
−2x(x2 + y2) (x2 + y2 + 2(y2 − x2))

(x2 + y2)4

=
−2x(3y2 − x2)

(x2 + y2)3

uy =
−2xy

(x2 + y2)2

uyy =
(x2 + y2)2(−2x) + 2xy(2)(x2 + y2)(2y)

(x2 + y2)4
=

2x(x2 + y2)(−(x2 + y2) + 4y2)

(x2 + y2)4

=
2x(3y2 − x2)

(x2 + y2)3

It is now immediately apparent that uxx + uyy = 0.

b. By symmetry and linearity, it immediately follows that v(x, y) =
−y

x2 + y2
also solves

Laplace’s equation. Show that u and v are related through the Cauchy-Riemann equa-
tions

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Solution: We already have the partial derivatives of u from part a, so we just compute
those of v:

vx =
2xy

(x2 + y2)2
= −uy from part a,

vy =
(x2 + y2)(−1) + y(2y)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
= ux also by part a.



5. Let

f1(x) = e−x

f2(x) = (2x− 1)e−x

f3(x) = (2x2 − 4x+ 1)e−x

a. Show that the functions f1, f2 and f3 are pairwise orthogonal on the interval [0,∞).
You may find it useful to know that∫ ∞

0

xne−2x dx =
n!

2n+1
for n ∈ N0.

Solution: We have

〈f1, f2〉 =

∫ ∞
0

f1(x)f2(x) dx =

∫ ∞
0

(2x− 1)e−2x dx

= 2

∫ ∞
0

xe−2x dx−
∫ ∞

0

e−2x dx

= 2 · 1!

22
− 0!

2
=

1

2
− 1

2
= 0,

〈f1, f3〉 =

∫ ∞
0

f1(x)f3(x) dx =

∫ ∞
0

(2x2 − 4x+ 1)e−2x dx

= 2

∫ ∞
0

x2e−2x dx− 4

∫ ∞
0

xe−2x dx+

∫ ∞
0

e−2x dx

= 2 · 2!

23
− 4 · 1!

22
+

0!

2
=

1

2
− 1 +

1

2
= 0,

〈f2, f3〉 =

∫ ∞
0

f2(x)f3(x) dx =

∫ ∞
0

(4x3 − 10x2 + 6x− 1)e−2x dx

= 4

∫ ∞
0

x3e−2x dx− 10

∫ ∞
0

x2e−2x dx+ 6

∫ ∞
0

xe−2x dx−
∫ ∞

0

e−2x dx

= 4 · 3!

24
− 10 · 2!

23
+ 6 · 1!

22
− 0!

2
=

3

2
− 5

2
+

3

2
− 1

2
= 0.



b. Use inner products to express x2e−x as a linear combination of f1, f2 and f3.

Solution: Let g(x) = x2e−x. We have

〈g, f1〉 =

∫ ∞
0

g(x)f1(x) dx =

∫ ∞
0

x2e−2x dx =
2!

23
=

1

4
,

〈f1, f1〉 =

∫ ∞
0

f1(x)f1(x) dx =

∫ ∞
0

e−2x dx =
0!

2
=

1

2
,

〈g, f2〉 =

∫ ∞
0

g(x)f2(x) dx =

∫ ∞
0

(2x3 − x2)e−2x dx

= 2

∫ ∞
0

x3e−2x dx−
∫ ∞

0

x2e−2x dx = 2 · 3!

24
− 2!

23
=

3

4
− 1

4
=

1

2
,

〈f2, f2〉 =

∫ ∞
0

f2(x)f2(x) dx =

∫ ∞
0

(4x2 − 4x+ 1)e−2x dx

= 4

∫ ∞
0

x2e−2x dx− 4

∫ ∞
0

xe−2x dx+

∫ ∞
0

e−2x dx

= 4 · 2!

23
− 4 · 1!

22
+

0!

2
= 1− 1 +

1

2
=

1

2
,

〈g, f3〉 =

∫ ∞
0

g(x)f3(x) dx =

∫ ∞
0

(2x4 − 4x3 + x2)e−2x dx

= 2

∫ ∞
0

x4e−2x dx− 4

∫ ∞
0

x3e−2x dx+

∫ ∞
0

x2e−2x dx

= 2 · 4!

25
− 4 · 3!

24
+

2!

23
=

3

2
− 3

2
+

1

4
=

1

4
,

〈f3, f3〉 =

∫ ∞
0

f3(x)f3(x) dx =

∫ ∞
0

(4x4 − 16x3 + 20x2 − 8x+ 1)e−2x dx

= 4

∫ ∞
0

x4e−2x dx− 16

∫ ∞
0

x3e−2x dx+ 20

∫ ∞
0

x2e−2x dx− 8

∫ ∞
0

xe−2x dx+

∫ ∞
0

e−2x dx

= 4 · 4!

25
− 16 · 3!

24
+ 20 · 2!

23
− 8 · 1!

22
+

0!

2
= 3− 6 + 5− 2 +

1

2
=

1

2

Hence the Fourier coefficients are

a1 =
〈g, f1〉
〈f1, f1〉

=
1/4

1/2
=

1

2
, a2 =

〈g, f2〉
〈f2, f2〉

=
1/2

1/2
= 1, a3 =

〈g, f3〉
〈f3, f3〉

=
1/4

1/2
=

1

2
,

so that

g =
1

2
f1 + f2 +

1

2
f3.



6. A single period of the graph of a 2π-periodic function f is shown. Carefully sketch
three periods of the graph of f and three periods of the graph of the Fourier series of f .
a.



b.



c.


