1. The Kronecker delta function® §(x,y) represents a point impulse at the origin and has

the property that

for any region 2 C R? and any (a,b) € 2. Suppose we have an ideal 3 x 5 elastic membrane,
with ¢ = 1/m, at equilibrium. If we impart a downward point impulse velocity at (1,1),
write down an expression that describes the resulting motion of the membrane. [Suggestion:
Translate the delta function so that its impulse occurs at (1,1) and use (1).]

Solution. We use the solution of the 2-D wave equation on a rectangle provided in the third
bullet point of the equation sheet. We have a = and b = 5. Since the membrane begins at
equilibrium, f(z,y) = 0 so that B,,, = 0 for all m, n. Furthermore, an initial downward
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point impulse velocity is given by g(z,y) = —6(x — 1,y — 1). Hence

B =
e 15)\mn

where p,, = mn/3, v,

So

Therefore

= nm/5. Since ¢ = 1/,

_CVMm+V2

*
an__

// —6(x — 1,y — 1) sin(pnx) sin(v,y) de dy =

n2

4 sin(piy,) sin(vy,)

V25m2 + 9n?

15\ mn

— + 3% = 15\, = V25m?2 + 9n2.

sin( g,y ) sin(vy,)

n

=1lm

1

4 m n .
sin( fiy, ) sin(v )s1

V25m?2 + 9n?

m?2 N n? A <m7rx
n(4\/—+-—t]sin
9 25

3

> sin

(

nmwy

5
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ITechnically § is not a function but a distribution, a subtlety we will ignore.




2. A thin a x b metal plate with insulated faces has the temperature along each edge
held constant. If the constant temperatures are 17, 15, T3 and T}, starting on the bottom
and going clockwise, find the resulting steady-state temperature distribution throughout the
plate.

Solution. The 2L-periodic half-range sine expansion of the constant function 7" has coeffi-
cients given by
2T

2 (L /nmx 2T L nmw L 1

0 nm

So if we apply the solution from the fourth bullet point of the formula sheet (the Dirichlet
problem on a rectangle) with f; = T4, fo = T3, g1 = T» and g = T we find that

= e (0 ) =
-y 2 e - A
Cn = sinht%) ' i_j;: (0 +1) = 2T72m(r(s1nlﬁn(t’f$ =
D, = m : i_j;: (D"t +1) = 2T;7(T(Smlﬁn(z; 2

The temperature is therefore given by

u(r,y) = i 21 ()™ + 1) sin (mra:) sinh (M)

“~ nmsinh ("”b) a a
273 (=)™ +1) . /nmx nmy
b ()
+ Z nmw smh ”;rb) S ( a ) sin a
2T (=)™t +1) | nr(a—x)\ . (nmy
b (25 )sin (557)
* ; nm sinh (”m) St b St b

2T ((—1)" 1 +1) . nwx\ . (NTY
W () ()
* Z nm smh (2re) S A




3. Consider the Dirichlet problem on the quarter of the unit disk in the first quadrant given
in polar coordinates by

Au=0, 0<r<l, O<0<g,

u(r,0) =u(r,m/2) =0, 0 <r <1,

u(1,0) =T, O<9<g.

a. Use separation of variables to reduce the homogeneous components of this problem
to a pair of ODE boundary value problems. [Remark: There is an implicit boundary
condition at the origin.]

Solution. In polar coordinates the Laplace equation is
Au = U + —up + —ugy = 0.
r r

Assuming u(r, ) = R(r)©(f) and plugging into the above we obtain

T2 R// r R/ @// 7“2 R// r R/ @//

R "R'e R "R o
where in the second step we have multiplied both sides by r?/RO. Clearing denomina-
tors gives us the ODEs

1 1
R'©O+-RO+ —-RO"=0 k,
r r2

R’ +rR — kR =0,
©" + kG = 0.

The two homogeneous boundary conditions tell us that
0=R(r)©(0) = [6(0)=0]|
0=R(r)O(r/2) = |O(n/2)=0]|

since we do not want R to be identically zero. Finally, we want our solution to re-
main bounded throughout the quarter disk. I particular, it should remain finite as we
approach the origin (though any angle). This requires:

R(0+) is finite.

b. Solve the boundary value problem in 6 found in a. [Remark: Tt should be a familiar
problem. Feel free to simply cite the solution.]

Solution. We encountered the boundary value problem

0"+ kO =0,
©(0) = O(r/2) =0,



in the context of the vibrating string of length 7/2 (and elsewhere). Up to constant
multiples, its solutions are

. [ nmd .
© =0, =sin (r/2> =sin(2nf), ne N

with |k = p2 = (nn/(7/2))? = 4n?|

. Use the result of part b to solve the boundary value problem in r found in a. [Remark:
It should be an Euler equation.|

Solution. For n € N, taking & = 4n? in the equation for R gives us the Euler equation
rR'+rR —4n*R =0
with indicial equation
PP+l —1Dp—4n?>=p*—4n* =0 p=+2n.

Therefore R = ¢;7*" + cor=2". Since r~*" — oo as 7 — 07, R(0+) will only be finite
(as required) if co = 0. So, up to a constant multiple, R is given by

R=R,=7r" neN|

. Use superposition to express the general solution as an infinite linear combination of
the modes found in parts b and c.

Solution. According to the previous two steps, the normal modes of this problem are
U, (r,0) = r*"sin(2nd), n € N.

Superposition gives the general solution

) = i Crtin (1, 0) Z ™ sin(2n6)
n=1

to the (homogeneous) Laplace equation and homogeneous boundary conditions on the
straight edges of the domain.

. Impose the final (inhomogeneous) boundary condition and express the coefficients of
the series solution in part d in terms of 7" (integral expressions are not sufficient).

Solution. Setting » = 1 in the general solution and imposing the boundary condition
there yields

T =u(1,0) chsm2n9

which is simply the m-periodic half-range sine expansion of the constant function 7.
According to the preceding exercise we have

2T > 2T
= — (D" +1) = —
¢ nm (< ) + ) ! nimw

1™ + 1) r*" sin(2nd) |




4. Consider the second order ODE
(I—2)y" + 2y —y =0 (2)
a. Show that a = 0 is an ordinary point of (2).

Solution. First we put (2) into standard form:

Using the sum of the geometric series we have

T - n - n+1 - n

_x:xe :Zm zzlx for |z < 1,
n—

— _Z;p” Z—x” for |z| < 1,

n=0

so that both coefficient coefficient functions are given by power series centered at a = 0
with positive radii of convergence, i.e. are analytic at a = 0. Hence a = 0 is an ordinary
point of the ODE (2).

b. Give a lower bound for the radii of convergence of every power series solution to (2)
centered at a = 0.

Solution. According to part a, the coefficient functions have radii of convergence equal
to 1, hence every solution analytic at @ = 0 has radius at least 1.

c. Find the recursion relation satisfied by the coefficients of every power series solution to
(2) centered at a = 0.

Solution. Writing
n=0

and plugging into the ODE (2) gives us

o o0
n—2 n
(1—x) E n(n — 1)a,z +x§ na,T —E apxr’ =
n=2

o0 [e.e] o
Zn(n—lan Znn—lannl—l—Znan —Zanx”—

n=2 n=2 n=1 n=0
Z (n+2)(n+ 1)ay0x™ — Z(n + Dnay2" + Z na,x" — Z a,z" =0
n=0 n=1 n=1 n=0

(2a9 — ap) + Z n+2)(n+ Dayo — (n+ Dnape + (n— 1)a,) 2" = 0.

n=1



According to the identity principle we must have

200 —ag =0 = GQZ%,
(n+2)(n+ Dayio — (n+ Dnapy + (n—1)a, =0
(n+ 1)nays1 — (n — 1a,
(n+2)(n+1) ’

= |Qpy2 = nzl

One can easily check that the second equation actually subsumes the first when n = 0.

. Use part c to find explicit power series expressions for two linearly independent solutions
to (2).

Solution. Taking ay = 1 and a; = 0 we find that

1 2@2 1 3'2&3—G2 1 4'3&4—2613 1
2T B30 3.2 4.3 4.3.20 7P 5.4 5.-4.3.2
1
=a,=— forn>2
n!

ooxn
n=2 :

With ag = 0 and a; = 1 we instead obtain

0 0 2&2 0 3'261,3—6L2 0 4'3&4—2(13
Ao = — = Ao = ——— — ap = — = ar = —Mm8M8M—
2 9 ) 3 3.9 ; W4 4.3 ) 5 5.4

=a,=0 forn>2
= [=7)

. Identify the power series you found in d as familiar functions.

=0,...

Solution. Clearly there’s nothing to do with y5. The function y; is just e* without its

linear term. That is
=]



5. Consider the second order ODE

1
2y + (2 + Z)y = 0. (3)

a. Show that a = 0 is a regular singular point of (3).

Solution. In standard form the ODE (3) becomes

y//+ ]_‘I_L yZO
42 ’

which has p(z) = 0 and g(z) = 1 + 1. Since ¢(x) is not analytic at a = 0 (it isn’t
even defined there), but zp(x) = 0 and z%q(x) = 2 + ; are both (finite) power series

centered at a = 0, with infinite radius of convergence, a = 0 is a regular singular point
of (3).

b. Find the values of r for which (3) has a Frobenius solution of the form

Yy = xrianx", ag # 0.

n=0

Give a lower bound on the radius of convergence of the power series factor.

Solution. Since xp(x) and z%q(x) from part a were shown to have infinite radius of
convergence, the power series factor in every Frobenius solution will have infinite radius
of convergence as well.

To determine the value(s) of r for which a Frobenius solution exists, we must solve the
indicial equation. Since

po = lim ap(z) = 0,
z—0
1
— T 2 — -
qo = lim 2°q(w) = 7,

the indicial equation is

with the single root

c. Find the recursion relation satisfied by the coefficients in each Frobenius solution.

Solution. Writing

o0

oo
y=ux" g a, " = g anpx™t’
n=0

n=0



and substituting into (3) we obtain

[e.e] oo 1 o0
7 Z(n +7)(n+1r—1Daz™ 2 + 22 Z anx™ " + 2 Z apx" =0

>
>

n+r)(n+r—1a,x "”—l—Zan g Zan "=0
n=0
)

n+r)(n+r—1a,z "+T+Zan Q" = Zan "=0
=0 n=2 =

1 1
(7“(7” - 1)+ Z) apr” + (T(T +1)+ 71) ayz"t

oo
1
—|—Z<n—|—r (n+r—1)a, + a,_ 2+4an)x"+’"20

n=2

Equating the coefficients in the final expression to zero yields (since ag # 0)

( 1)+1 —0 > im0 = =l
r(r 1) 0= riert g = r=g

1 1 3 1
(T‘(T’—l—l)—i-z)al:o = (5‘5‘1‘1)611:0 = 7

1 1 1
(n""’”)(n‘i‘r—1)an+an72+1an20 = n—|—§ n-3 ap + =y + Qy_o =

—Qn—2
= na,+a, =0 = |a,= "= forn > 2|,

n

d. By taking ap = 1, find explicit expressions for the power series factors of each Frobenius
solution.

Solution. Since a; = 0, the recursion relation tells us that

—Qaq —as —das
CLBZT:O = a5:2—5:0 = CL7:E:0 = = a2k+120f0rk20.
Moreover, with ag = 1 we have
—Qo -1 —am 1 —Qay -1
m=r = T M= g Tmp T =G < ape

) N ) L e
220262 (2k)2  (2-4-6---(2k)?  22(k)?

Hence our only Frobenius solution is

= Qg = for k£ > 0.

y = x1/2§: (—1)ka* .

92k (k" 2
k=0




PDESs, Exam 3 POTENTIALLY USEFUL RESULTS

e The two-dimensional Laplace operator, in Cartesian (resp. polar) coordinates, is
1
AU = Ugg + Uyy = Upp + ;ur + ﬁU@Q.

e The solution of the boundary value problem

u=c*Au, 0<z<a, 0<y<b t>0,

uw(0,y,t) = u(a,y,t) =0, 0<y<b, t>0,

w(z,0,t) =u(z,b,t) =0, 0<z<a, t>0,

w(z,y,0) = f(z,y), 0<z<a, 0<y<b,
is

w(z,y, 1) = 3> A Sin () sin(wy)en?,

m=1n=1

where p, = 25, vy, = 55, A = /3, + v, and
4 b pra
Ay = _/ / f(x,y) sin(pp,x) sin(v,y) dx dy.
ab 0 0

e The solution of the boundary value problem

Uy =cAu, 0<z<a, 0<y<b, t>0,

w(0,y,t) = u(a,y,t) =0, 0<y<b, t>0,

u(z,0,t) =u(z,b,t) =0, 0<z<a, t>0,

u(z,y,0) = f(z,y), w(z,y,0)=g(r,y), 0<z<a 0<y<b,
is

w(@,y,t) = > Y (Bun €08 (Ant) + Bl $in (Anunt)) $in (@) sin(vny),
where ji,, = "%, v, = 5, Ay = /2, + 12, and

4 b a
an = / / f(xa y) Sln(,uml') SiIl(l/ny) dl’ dy7
ab 0 0

4

b ra
B = a'b/\mn/o /0 g(x,y) sin(p, ) sin(v,y) dz dy.

e The solution of the boundary value problem
Au=0, 0<z<a, 0<y<b t>0,
U(QZ,O) = fl(x)’ U(ﬂ?,b) = fZ(x)a 0<z<a,
w(0,y) = g1(y), ula,y) =g2(y), 0<a <D,



is

u(z,y) = Z Ay sin(p,x) sinh(p, (b — y)) + Z By, sin(p,x) sinh(p,y)

n=1 =1
+ ZC sinh(vy,(a — x)) sin(v,y) ZD sinh(v, ) sin(v,y),
n=1 n—1
where Hn = nTZT, Vp = nTW and
= = /af()'( ydz, B, = 2 /af()'( )d
- CLSlnh(,unb) 0 1\Z) S Un ) AT, n — asmh(,unb) ] 2\ ) sIn{ Unpx ) AT,

2 b 2 b
bsinh(yna)/o gl(y) SID(V y) Y bSth(Vna) \/0 gg(y) Sln(l/ y) Y
e The general solution of the polar coordinate boundary value problem

Au=0, 0<r<a, 0<60<2m,
u(a,0) = f(0), 0<6 <2,

is

u(r,0) —ao—i-Z( ) a, cos(nf) + by, sin(nf)) ,

where

1 2

ag = % . f(@) d9,
1 2w

a, = — f(@)cos(nb)dd (n>0),
T
1 027r

b, = — f(0)sin(nb)do (n > 0).
™ Jo

e The general solution of the Euler equation
22y +axy +by =0, x>0,
depends on the roots r1, ro of the indicial equation
P+ (a—1)r+b=0

as follows:

Case 1. If r; # ry are real, then
y=c1x'™ + cox'.

Case 2. If r; = ry, then
y=c1x™t + cor Inz.

Case 3. If 1,79 = a+ (1 with § # 0, then
y = 2%(cycos(Blnz) + cosin(flnx)).



e Power series expansions of a few familiar functions.

| PS Expansion | Valid for |
1 =
T nzzox lz| < 1
e’ = Z a:_' all x
“— nl
' e (_1)nl.2n+1
sinx = - all x
nZ:U (2n +1)!
e (_1)nx2n
cosT = Z - all z
|
—~ (2n)!
S 2n+1
sinhz = —_— all x
; (2n +1)!
coshz = — all x
|
“— (2n)!
o —1)" 2n+1
arctan z = Z % lz| <1
n
ES n+1 n
a1 + 2) Z (Sl
(1+x)k:Z(n>x” lz| < 1
k=0

In the final series, £ € R and the generalized binomial coefficient is given by

<k> _ k(k—1)(k—2)(k—3)---(k—(n—l))'

n n!

e Trigonometric identities:

cos(A + B) = cos Acos B F sin Asin B
sin(A + B) = sin Acos B £ sin B cos A

cos? A — 1+ cos24

sin? A — 1— (3208 2A
sin Acos B — (sin(il — B) +sin(A + B))
sin Asin B — (cos(A — B) 2— cos(A+ B))
cos Acos B = (cos(A = B) i cos(A+ B))

2



