
Math 3357 Spring 2018

Partial Differential Equations

Third Exam

Solutions

1. The Kronecker delta function1 δ(x, y) represents a point impulse at the origin and has
the property that ∫∫

Ω

δ(x− a, y − b)f(x, y) dA = f(a, b) (1)

for any region Ω ⊆ R2 and any (a, b) ∈ Ω. Suppose we have an ideal 3× 5 elastic membrane,
with c = 1/π, at equilibrium. If we impart a downward point impulse velocity at (1, 1),
write down an expression that describes the resulting motion of the membrane. [Suggestion:
Translate the delta function so that its impulse occurs at (1, 1) and use (1).]

Solution. We use the solution of the 2-D wave equation on a rectangle provided in the third
bullet point of the equation sheet. We have a = and b = 5. Since the membrane begins at
equilibrium, f(x, y) = 0 so that Bmn = 0 for all m, n. Furthermore, an initial downward
point impulse velocity is given by g(x, y) = −δ(x− 1, y − 1). Hence

B∗mn =
4

15λmn

∫ b

0

∫ a

0

−δ(x− 1, y − 1) sin(µmx) sin(νny) dx dy = − 4

15λmn
sin(µm) sin(νn)

where µm = mπ/3, νn = nπ/5. Since c = 1/π,

λmn = c
√
µ2
m + ν2 =

√
m2

9
+
n2

25
⇒ 15λmn =

√
25m2 + 9n2.

So

B∗mn = −4 sin(µm) sin(νn)√
25m2 + 9n2

.

Therefore

u(x, t) =
∞∑
n=1

∞∑
m=1

−4 sin(µm) sin(νn)√
25m2 + 9n2

sin

(√
m2

9
+
n2

25
t

)
sin
(mπx

3

)
sin
(nπy

5

)
.

1Technically δ is not a function but a distribution, a subtlety we will ignore.



2. A thin a × b metal plate with insulated faces has the temperature along each edge
held constant. If the constant temperatures are T1, T2, T3 and T4, starting on the bottom
and going clockwise, find the resulting steady-state temperature distribution throughout the
plate.

Solution. The 2L-periodic half-range sine expansion of the constant function T has coeffi-
cients given by

bn =
2

L

∫ L

0

T sin
(nπx
L

)
dx =

2T

L

(
− L

nπ
cos
(nπx
L

)) ∣∣∣∣L
0

=
2T

nπ

(
(−1)n+1 + 1

)
.

So if we apply the solution from the fourth bullet point of the formula sheet (the Dirichlet
problem on a rectangle) with f1 = T1, f2 = T3, g1 = T2 and g2 = T4 we find that

An =
1

sinh
(
nπb
a

) · 2T1

nπ

(
(−1)n+1 + 1

)
=

2T1 ((−1)n+1 + 1)

nπ sinh
(
nπb
a

) ,

Bn =
1

sinh
(
nπb
a

) · 2T3

nπ

(
(−1)n+1 + 1

)
=

2T3 ((−1)n+1 + 1)

nπ sinh
(
nπb
a

) ,

Cn =
1

sinh
(
nπa
b

) · 2T2

nπ

(
(−1)n+1 + 1

)
=

2T2 ((−1)n+1 + 1)

nπ sinh
(
nπa
b

) ,

Dn =
1

sinh
(
nπa
b

) · 2T4

nπ

(
(−1)n+1 + 1

)
=

2T4 ((−1)n+1 + 1)

nπ sinh
(
nπa
b

) .

The temperature is therefore given by

u(x, y) =
∞∑
n=1

2T1 ((−1)n+1 + 1)

nπ sinh
(
nπb
a

) sin
(nπx

a

)
sinh

(
nπ(b− y)

a

)
+
∞∑
n=1

2T3 ((−1)n+1 + 1)

nπ sinh
(
nπb
a

) sin
(nπx

a

)
sinh

(nπy
a

)
+
∞∑
n=1

2T2 ((−1)n+1 + 1)

nπ sinh
(
nπa
b

) sinh

(
nπ(a− x)

b

)
sin
(nπy

b

)
+
∞∑
n=1

2T4 ((−1)n+1 + 1)

nπ sinh
(
nπa
b

) sinh
(nπx

b

)
sin
(nπy

b

)
.



3. Consider the Dirichlet problem on the quarter of the unit disk in the first quadrant given
in polar coordinates by

∆u = 0, 0 < r < 1, 0 < θ <
π

2
,

u(r, 0) = u(r, π/2) = 0, 0 < r < 1,

u(1, θ) = T, 0 < θ <
π

2
.

u

u= 0

u= 0

=T

u = 0

1

1 x

y

a. Use separation of variables to reduce the homogeneous components of this problem
to a pair of ODE boundary value problems. [Remark: There is an implicit boundary
condition at the origin.]

Solution. In polar coordinates the Laplace equation is

∆u = urr +
1

r
ur +

1

r2
uθθ = 0.

Assuming u(r, θ) = R(r)Θ(θ) and plugging into the above we obtain

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0 ⇒ r2R′′

R
+
rR′

R
+

Θ′′

Θ
= 0 ⇒ r2R′′

R
+
rR′

R
= −Θ′′

Θ
= k,

where in the second step we have multiplied both sides by r2/RΘ. Clearing denomina-
tors gives us the ODEs

r2R′′ + rR′ − kR = 0,

Θ′′ + kΘ = 0.

The two homogeneous boundary conditions tell us that

0 = R(r)Θ(0) ⇒ Θ(0) = 0 ,

0 = R(r)Θ(π/2) ⇒ Θ(π/2) = 0 ,

since we do not want R to be identically zero. Finally, we want our solution to re-
main bounded throughout the quarter disk. I particular, it should remain finite as we
approach the origin (though any angle). This requires:

R(0+) is finite.

b. Solve the boundary value problem in θ found in a. [Remark: It should be a familiar
problem. Feel free to simply cite the solution.]

Solution. We encountered the boundary value problem

Θ′′ + kΘ = 0,

Θ(0) = Θ(π/2) = 0,



in the context of the vibrating string of length π/2 (and elsewhere). Up to constant
multiples, its solutions are

Θ = Θn = sin

(
nπθ

π/2

)
= sin(2nθ), n ∈ N

with k = µ2
n = (nπ/(π/2))2 = 4n2 .

c. Use the result of part b to solve the boundary value problem in r found in a. [Remark:
It should be an Euler equation.]

Solution. For n ∈ N, taking k = 4n2 in the equation for R gives us the Euler equation

r2R′′ + rR′ − 4n2R = 0

with indicial equation

ρ2 + (1− 1)ρ− 4n2 = ρ2 − 4n2 = 0 ρ = ±2n.

Therefore R = c1r
2n + c2r

−2n. Since r−2n → ∞ as r → 0+, R(0+) will only be finite
(as required) if c2 = 0. So, up to a constant multiple, R is given by

R = Rn = r2n, n ∈ N .

d. Use superposition to express the general solution as an infinite linear combination of
the modes found in parts b and c.

Solution. According to the previous two steps, the normal modes of this problem are

un(r, θ) = r2n sin(2nθ), n ∈ N.
Superposition gives the general solution

u(r, θ) =
∞∑
n=1

cnun(r, θ) =
∞∑
n=1

cnr
2n sin(2nθ)

to the (homogeneous) Laplace equation and homogeneous boundary conditions on the
straight edges of the domain.

e. Impose the final (inhomogeneous) boundary condition and express the coefficients of
the series solution in part d in terms of T (integral expressions are not sufficient).

Solution. Setting r = 1 in the general solution and imposing the boundary condition
there yields

T = u(1, θ) =
∞∑
n=1

cn sin(2nθ)

which is simply the π-periodic half-range sine expansion of the constant function T .
According to the preceding exercise we have

cn =
2T

nπ

(
(−1)n+1 + 1

)
⇒ u(r, θ) =

∞∑
n=1

2T

nπ

(
(−1)n+1 + 1

)
r2n sin(2nθ) .



4. Consider the second order ODE

(1− x)y′′ + xy′ − y = 0. (2)

a. Show that a = 0 is an ordinary point of (2).

Solution. First we put (2) into standard form:

y′′ +
x

1− x
y′ − 1

1− x
y = 0.

Using the sum of the geometric series we have

x

1− x
= x

∞∑
n=0

xn =
∞∑
n=0

xn+1 =
∞∑
n=1

xn for |x| < 1,

− 1

1− x
= −

∞∑
n=0

xn =
∞∑
n=0

−xn for |x| < 1,

so that both coefficient coefficient functions are given by power series centered at a = 0
with positive radii of convergence, i.e. are analytic at a = 0. Hence a = 0 is an ordinary
point of the ODE (2).

b. Give a lower bound for the radii of convergence of every power series solution to (2)
centered at a = 0.

Solution. According to part a, the coefficient functions have radii of convergence equal
to 1, hence every solution analytic at a = 0 has radius at least 1.

c. Find the recursion relation satisfied by the coefficients of every power series solution to
(2) centered at a = 0.

Solution. Writing

y =
∞∑
n=0

anx
n

and plugging into the ODE (2) gives us

(1− x)
∞∑
n=2

n(n− 1)anx
n−2 + x

∞∑
n=1

nanx
n−1 −

∞∑
n=0

anx
n = 0

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n−1 +

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

(n+ 1)nan+1x
n +

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0

(2a2 − a0) +
∞∑
n=1

((n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + (n− 1)an)xn = 0.



According to the identity principle we must have

2a2 − a0 = 0 ⇒ a2 =
a0

2
,

(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + (n− 1)an = 0

⇒ an+2 =
(n+ 1)nan+1 − (n− 1)an

(n+ 2)(n+ 1)
, n ≥ 1 .

One can easily check that the second equation actually subsumes the first when n = 0.

d. Use part c to find explicit power series expressions for two linearly independent solutions
to (2).

Solution. Taking a0 = 1 and a1 = 0 we find that

a2 =
1

2
, a3 =

2a2

3 · 2
=

1

3 · 2
, a4 =

3 · 2a3 − a2

4 · 3
=

1

4 · 3 · 2
, a5 =

4 · 3a4 − 2a3

5 · 4
=

1

5 · 4 · 3 · 2
, . . .

⇒ an =
1

n!
for n ≥ 2

⇒ y1 = 1 +
∞∑
n=2

xn

n!
.

With a0 = 0 and a1 = 1 we instead obtain

a2 =
0

2
= 0, a3 =

2a2

3 · 2
= 0, a4 =

3 · 2a3 − a2

4 · 3
= 0, a5 =

4 · 3a4 − 2a3

5 · 4
= 0, . . .

⇒ an = 0 for n ≥ 2

⇒ y2 = x .

e. Identify the power series you found in d as familiar functions.

Solution. Clearly there’s nothing to do with y2. The function y1 is just ex without its
linear term. That is

y1 = ex − x .



5. Consider the second order ODE

x2y′′ + (x2 +
1

4
)y = 0. (3)

a. Show that a = 0 is a regular singular point of (3).

Solution. In standard form the ODE (3) becomes

y′′ +

(
1 +

1

4x2

)
y = 0,

which has p(x) = 0 and q(x) = 1 + 1
4x2

. Since q(x) is not analytic at a = 0 (it isn’t

even defined there), but xp(x) = 0 and x2q(x) = x2 + 1
4

are both (finite) power series
centered at a = 0, with infinite radius of convergence, a = 0 is a regular singular point
of (3).

b. Find the values of r for which (3) has a Frobenius solution of the form

y = xr
∞∑
n=0

anx
n, a0 6= 0.

Give a lower bound on the radius of convergence of the power series factor.

Solution. Since xp(x) and x2q(x) from part a were shown to have infinite radius of
convergence, the power series factor in every Frobenius solution will have infinite radius
of convergence as well.

To determine the value(s) of r for which a Frobenius solution exists, we must solve the
indicial equation. Since

p0 = lim
x→0

xp(x) = 0,

q0 = lim
x→0

x2q(x) =
1

4
,

the indicial equation is

r2 + (0− 1)r +
1

4
=

(
r − 1

2

)2

= 0

with the single root

r =
1

2
.

c. Find the recursion relation satisfied by the coefficients in each Frobenius solution.

Solution. Writing

y = xr
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r



and substituting into (3) we obtain

x2

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2 + x2

∞∑
n=0

anx
n+r +

1

4

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r +

∞∑
n=0

anx
n+r+2 +

1

4

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r +

∞∑
n=2

an−2x
n+r +

1

4

∞∑
n=0

anx
n+r = 0(

r(r − 1) +
1

4

)
a0x

r +

(
r(r + 1) +

1

4

)
a1x

r+1

+
∞∑
n=2

(
(n+ r)(n+ r − 1)an + an−2 +

1

4
an

)
xn+r = 0

Equating the coefficients in the final expression to zero yields (since a0 6= 0)(
r(r − 1) +

1

4

)
a0 = 0 ⇒ r2 − r +

1

4
= 0 ⇒ r =

1

2
,(

r(r + 1) +
1

4

)
a1 = 0 ⇒

(
1

2
· 3

2
+

1

4

)
a1 = 0 ⇒ a1 = 0 ,

(n+ r)(n+ r − 1)an + an−2 +
1

4
an = 0 ⇒

(
n+

1

2

)(
n− 1

2

)
an +

1

4
an + an−2 = 0

⇒ n2an + an−2 = 0 ⇒ an =
−an−2

n2
for n ≥ 2 .

d. By taking a0 = 1, find explicit expressions for the power series factors of each Frobenius
solution.

Solution. Since a1 = 0, the recursion relation tells us that

a3 =
−a1

9
= 0 ⇒ a5 =

−a3

25
= 0 ⇒ a7 =

−a5

49
= 0 ⇒ · · · ⇒ a2k+1 = 0 for k ≥ 0.

Moreover, with a0 = 1 we have

a2 =
−a0

22
=
−1

22
⇒ a4 =

−a2

42
=

1

2242
⇒ a6 =

−a4

62
=
−1

224262
⇒ · · ·

⇒ a2k =
(−1)k

224262 · · · (2k)2
=

(−1)k

(2 · 4 · 6 · · · (2k))2
=

(−1)k

22k(k!)2
for k ≥ 0.

Hence our only Frobenius solution is

y = x1/2

∞∑
k=0

(−1)kx2k

22k(k!)2
.



PDEs, Exam 3 Potentially Useful Results

• The two-dimensional Laplace operator, in Cartesian (resp. polar) coordinates, is

∆u = uxx + uyy = urr +
1

r
ur +

1

r2
uθθ.

• The solution of the boundary value problem

ut = c2∆u, 0 < x < a, 0 < y < b, t > 0,

u(0, y, t) = u(a, y, t) = 0, 0 ≤ y ≤ b, t ≥ 0,

u(x, 0, t) = u(x, b, t) = 0, 0 ≤ x ≤ a, t ≥ 0,

u(x, y, 0) = f(x, y), 0 < x < a, 0 < y < b,

is

u(x, y, t) =
∞∑
m=1

∞∑
n=1

Amn sin(µmx) sin(νny)e−λ
2
mnt,

where µm = mπ
a

, νn = nπ
b

, λmn = c
√
µ2
m + ν2

n, and

Amn =
4

ab

∫ b

0

∫ a

0

f(x, y) sin(µmx) sin(νny) dx dy.

• The solution of the boundary value problem

utt = c2∆u, 0 < x < a, 0 < y < b, t > 0,

u(0, y, t) = u(a, y, t) = 0, 0 ≤ y ≤ b, t ≥ 0,

u(x, 0, t) = u(x, b, t) = 0, 0 ≤ x ≤ a, t ≥ 0,

u(x, y, 0) = f(x, y), ut(x, y, 0) = g(x, y), 0 < x < a, 0 < y < b,

is

u(x, y, t) =
∞∑
n=1

∞∑
m=1

(Bmn cos (λmnt) +B∗mn sin (λmnt)) sin(µmx) sin(νny),

where µm = mπ
a

, νn = nπ
b

, λmn = c
√
µ2
m + ν2

n, and

Bmn =
4

ab

∫ b

0

∫ a

0

f(x, y) sin(µmx) sin(νny) dx dy,

B∗mn =
4

abλmn

∫ b

0

∫ a

0

g(x, y) sin(µmx) sin(νny) dx dy.

• The solution of the boundary value problem

∆u = 0, 0 < x < a, 0 < y < b, t > 0,

u(x, 0) = f1(x), u(x, b) = f2(x), 0 ≤ x ≤ a,

u(0, y) = g1(y), u(a, y) = g2(y), 0 ≤ x ≤ b,



is

u(x, y) =
∞∑
n=1

An sin(µnx) sinh(µn(b− y)) +
∞∑
n=1

Bn sin(µnx) sinh(µny)

+
∞∑
n=1

Cn sinh(νn(a− x)) sin(νny) +
∞∑
n=1

Dn sinh(νnx) sin(νny),

where µn = nπ
a

, νn = nπ
b

and

An =
2

a sinh(µnb)

∫ a

0

f1(x) sin(µnx) dx, Bn =
2

a sinh(µnb)

∫ a

0

f2(x) sin(µnx) dx,

Cn =
2

b sinh(νna)

∫ b

0

g1(y) sin(νny) dy, Dn =
2

b sinh(νna)

∫ b

0

g2(y) sin(νny) dy.

• The general solution of the polar coordinate boundary value problem

∆u = 0, 0 < r < a, 0 < θ < 2π,

u(a, θ) = f(θ), 0 ≤ θ ≤ 2π,

is

u(r, θ) = a0 +
∞∑
n=1

(r
a

)n
(an cos(nθ) + bn sin(nθ)) ,

where

a0 =
1

2π

∫ 2π

0

f(θ) dθ,

an =
1

π

∫ 2π

0

f(θ) cos(nθ) dθ (n > 0),

bn =
1

π

∫ 2π

0

f(θ) sin(nθ) dθ (n > 0).

• The general solution of the Euler equation

x2y′′ + axy′ + by = 0, x > 0,

depends on the roots r1, r2 of the indicial equation

r2 + (a− 1)r + b = 0

as follows:

Case 1. If r1 6= r2 are real, then

y = c1x
r1 + c2x

r2 .

Case 2. If r1 = r2, then
y = c1x

r1 + c2x
r1 lnx.

Case 3. If r1, r2 = α± βi with β 6= 0, then

y = xα(c1 cos(β lnx) + c2 sin(β lnx)).



• Power series expansions of a few familiar functions.

PS Expansion Valid for

1

1− x
=
∞∑
n=0

xn |x| < 1

ex =
∞∑
n=0

xn

n!
all x

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
all x

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
all x

sinhx =
∞∑
n=0

x2n+1

(2n+ 1)!
all x

coshx =
∞∑
n=0

x2n

(2n)!
all x

arctanx =
∞∑
n=0

(−1)nx2n+1

2n+ 1
|x| < 1

ln(1 + x) =
∞∑
n=1

(−1)n+1xn

n
|x| < 1

(1 + x)k =
∞∑
k=0

(
k

n

)
xn |x| < 1

In the final series, k ∈ R and the generalized binomial coefficient is given by(
k

n

)
=
k(k − 1)(k − 2)(k − 3) · · · (k − (n− 1))

n!
.

• Trigonometric identities:

cos(A±B) = cosA cosB ∓ sinA sinB

sin(A±B) = sinA cosB ± sinB cosA

cos2A =
1 + cos 2A

2

sin2A =
1− cos 2A

2

sinA cosB =
(sin(A−B) + sin(A+B))

2

sinA sinB =
(cos(A−B)− cos(A+B))

2

cosA cosB =
(cos(A−B) + cos(A+B))

2


