Exercise 1. Textbook exercise 3.6.3. [Suggestion: Use a scaled version of the series in Exercise 2.2.5.]

Exercise 2. Textbook exercise 3.6.4. [Suggestion: Use Exercise 2.3.6.]

Exercise 3. Show that the solution to the constant boundary flux heat problem

$$
\begin{array}{ll}
u_{t}=c^{2} u_{x x}, & 0<x<L, 0<t \\
u_{x}(0, t)=-F_{1}, \quad u_{x}(L, t)=-F_{2}, & 0<t \\
u(x, 0)=f(x), & 0<x<L
\end{array}
$$

is given by

$$
\begin{aligned}
u(x, t)= & \frac{F_{1}-F_{2}}{2 L} x^{2}-F_{1} x+\frac{c^{2}\left(F_{1}-F_{2}\right)}{L} t+\frac{\left(F_{2}+2 F_{1}\right) L}{6}+\widehat{a_{0}} \\
& +\sum_{n=1}^{\infty}\left(\widehat{a_{n}}+\frac{2 L\left((-1)^{n} F_{2}-F_{1}\right)}{n^{2} \pi^{2}}\right) e^{-\lambda_{n}^{2} t} \cos \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

where $\lambda_{n}=\frac{c n \pi}{L}$ and

$$
\widehat{a_{0}}+\sum_{n=1}^{\infty} \widehat{a_{n}} \cos \left(\frac{n \pi x}{L}\right)
$$

is the $2 L$-periodic cosine expansion of $f(x)$.

Exercise 4. Solve the constant boundary heat flux problem

$$
\begin{aligned}
& u_{t}=2 u_{x x}, \\
& u_{x}(0, t)=-1, \quad u_{x}(3, t)=6, \\
& u(x, 0)= \begin{cases}2-x & \text { if } 0<x \leq 2 \\
0 & \text { if } 2<x<3\end{cases}
\end{aligned}
$$

[Suggestion: Use the previous exercise and Exercise 2.3.8.]

