Exercise 1. Consider the radiating end heat problem

$$
\begin{align*}
& u_{t}=9 u_{x x}, \quad 0<x<2, \quad t>0 \\
& u(0, t)=0, t>0 \\
& u_{x}(2, t)=-4 u(2, t), t>0 \tag{1}\\
& u(x, 0)= \begin{cases}100 & \text { if } 0<x \leq 1 \\
0 & \text { if } 1<x<2\end{cases}
\end{align*}
$$

a. Solve (1) using a generalized Fourier series as we did in class. Express your answer in terms of the positive solutions μ_{n} to $\tan (\mu L)=-\mu / \kappa$.
b. For $1 \leq n \leq 5$, numerically evaluate μ_{n} and the generalized Fourier coefficients c_{n} to four decimal places.
c. Use part \mathbf{b} to write out the first 5 terms of the solution to (1).

Exercise 2. Textbook exercise 3.6.10.

Exercise 3. Show that if $\mu>0$ satisfies $\tan (\mu L)=-\mu / \kappa(\kappa, L>0)$, then

$$
\int_{0}^{L} \sin ^{2}(\mu x) d x=\frac{\kappa L+\cos ^{2}(\mu L)}{2 \kappa}
$$

[Suggestion: Use a half-angle formula to integrate sine squared.]

