

Partial Differential Equations Spring 2018

Assignment 13 Due March 8

Exercise 1. Consider the radiating end heat problem

$$u_{t} = 9u_{xx}, \quad 0 < x < 2, \quad t > 0,$$

$$u(0,t) = 0, \quad t > 0,$$

$$u_{x}(2,t) = -4u(2,t), \quad t > 0,$$

$$u(x,0) = \begin{cases} 100 & \text{if } 0 < x \le 1,\\ 0 & \text{if } 1 < x < 2. \end{cases}$$

$$(1)$$

- **a.** Solve (1) using a generalized Fourier series as we did in class. Express your answer in terms of the positive solutions μ_n to $\tan(\mu L) = -\mu/\kappa$.
- **b.** For $1 \le n \le 5$, numerically evaluate μ_n and the generalized Fourier coefficients c_n to four decimal places.
- **c.** Use part **b** to write out the first 5 terms of the solution to (1).

Exercise 2. Textbook exercise 3.6.10.

Exercise 3. Show that if $\mu > 0$ satisfies $\tan(\mu L) = -\mu/\kappa$ $(\kappa, L > 0)$, then

$$\int_0^L \sin^2(\mu x) \, dx = \frac{\kappa L + \cos^2(\mu L)}{2\kappa}.$$

[Suggestion: Use a half-angle formula to integrate sine squared.]