

Partial Differential Equations Spring 2018

Assignment 2 Due January 23

Instructions: (a) Find the general solution to the given partial differential equation and (b) use it to find the solution satisfying the given initial data.

Exercise 1	•	$2\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = (x+y)u$
		$u(x,x) = e^{-x^2}$
Exercise 2	•	$\frac{\partial u}{\partial x} = -(2x+y)\frac{\partial u}{\partial y}$
		$u(0,y) = 1 + y^2$
Exercise 3	•	$y\frac{\partial u}{\partial x} + x\frac{\partial u}{\partial y} = 0$
		$u(x,0) = x^4$
Exercise 4	•	$\frac{\partial u}{\partial x} + 2y \frac{\partial u}{\partial y} = e^{-x} - u$
		$u(0,y) = \arctan y$
Exercise 5	•	$\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -ru$ (here r and $v \neq 0$ are constants)
		$u(x,0) = \frac{\sin x}{x}$