Exercise 1. Textbook exercise A.5.7 (find explicit expressions for the coefficients of two linearly independent solutions).

Exercise 2. Show that the change of variable $t=\sqrt{2 x}$ in the ODE

$$
\begin{equation*}
2 x y^{\prime \prime}+y^{\prime}+y=0, \quad x>0 \tag{1}
\end{equation*}
$$

results in the constant coefficient ODE

$$
\ddot{y}+y=0,
$$

where dots indicate derivatives with respect to t. Use this to find the general solution to (1).

Exercise 3. One can show that the ODE

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}-14 x y^{\prime}+(20-x) y=0 \tag{2}
\end{equation*}
$$

has solutions of the form

$$
\begin{equation*}
y=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}, \quad a_{0} \neq 0 \tag{3}
\end{equation*}
$$

in which the series converges for all x.
a. By substituting (3) into (2), determine the values of r that yield solutions, as well as the recursion relations satisfied by the coefficients for each such value.
b. For each value of r found in part a, find the first 5 terms in the solution (3) (assuming $a_{0}=1$).

