Partial Differential Equations Spring 2018

Project 1: RLC Circuits Due March 2, 5pm

Consider a circuit consisting of a (variable) voltage source, a resistor, an inductor and a capacitor wired in series, as shown below.


This is an example of an RLC circuit, and in this project we will investigate the role such a circuit can play in signal processing. We will consider the (time dependent) voltage source $x(t)$ as the input signal to the circuit, and the voltage $y(t)$ across the resistor as the output. The voltage $z(t)$ across the capacitor will serve as an intermediate quantity in our derivations.

If we let $I(t)$ denote the (clockwise) current through the circuit, then the voltages across the resistor, inductor and capacitor are $y(t)=R I(t), L I^{\prime}(t)$ and $z(t)$, respectively. According to Kirchoff's law, these voltages must add up to the input voltage, so that

$$
\begin{equation*}
R I(t)+L I^{\prime}(t)+z(t)=x(t) \tag{1}
\end{equation*}
$$

If $q(t)$ denotes the charge on the capacitor, then $q(t)=C z(t)$. Since $I(t)=q^{\prime}(t)$, this means that $I(t)=C z^{\prime}(t)$ and $I^{\prime}(t)=C z^{\prime \prime}(t)$. Substituting these into (1), we find that the input signal $x(t)$ and the voltage $z(t)$ across the capacitor are related by the second order linear differential equation

$$
\begin{equation*}
L C z^{\prime \prime}(t)+R C z^{\prime}(t)+z(t)=x(t) \tag{2}
\end{equation*}
$$

We will now convert (2) into a differential equation in $y(t)$ instead. Since $y(t)=R I(t)=$ $R C z^{\prime}(t)$ implies that $z^{\prime}(t)=y(t) / R C$, differentiating (2) immediately yields

$$
L C \frac{y^{\prime \prime}(t)}{R C}+y^{\prime}(t)+\frac{y(t)}{R C}=x^{\prime}(t) .
$$

Multiplying through by $R C$ finally puts this in the form

$$
\begin{equation*}
L C y^{\prime \prime}(t)+R C y^{\prime}(t)+y(t)=R C x^{\prime}(t) . \tag{3}
\end{equation*}
$$

We will assume that the input signal is $2 p$-periodic, sufficiently smooth, and equal to its Fourier series:

$$
\begin{equation*}
x(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi t}{p}\right)+b_{n} \sin \left(\frac{n \pi t}{p}\right)\right) . \tag{4}
\end{equation*}
$$

One can easily show that the solutions to the complementary equation

$$
L C y^{\prime \prime}(t)+R C y^{\prime}(t)+y(t)=0
$$

all decay exponentially as $t \rightarrow \infty$, i.e. only contribute transient terms to the output signal $y(t)$. If we furthermore assume that enough time has passed so that these transient contributions have died out, we find that $y(t)$ is also $2 p$-periodic, and so has a Fourier series:

$$
\begin{equation*}
y(t)=c_{0}+\sum_{n=1}^{\infty}\left(c_{n} \cos \left(\frac{n \pi t}{p}\right)+d_{n} \sin \left(\frac{n \pi t}{p}\right)\right) . \tag{5}
\end{equation*}
$$

## Exercises

Exercise 1. By directly substituting the series expressions (4) and (5) into (3), and then comparing the Fourier coefficients of both sides, express $c_{0}, c_{n}$ and $d_{n}$ in terms of $a_{0}, a_{n}$ and $b_{n}$. You may assume $x(t), y(t)$ and $y^{\prime}(t)$ are sufficiently smooth for their Fourier series to be differentiated term-wise. You may also find it convenient to introduce the frequency variables $\omega_{n}=n \pi / p$.

Exercise 2. Create a Maple document which plots (partial sums of) the input and output signals. In order to make your code as portable as possible, it is required that:

- The values for $R, L, C$ and $p$ are stored in variables with these names.
- The coefficients $a_{n}, b_{n}, c_{n}$ and $d_{n}$ are functions of $n$, i.e. can be called as a(n), $\mathrm{b}(\mathrm{n})$, $c(n)$ and $d(n)$.
- The variable $N$ is used to specify the length of the partial sums that are plotted.
- Your plots extend from $t=0$ to $t=6 p$.
- Your code is carefully documented and written so that the various input parameters are easily modified.

Exercise 3. With the values $R=500, L=0.1, C=1.0 \times 10^{-7}$ and $p=1 / 200$, use your code to produce plots for the following input signals.
a. A square wave of amplitude 1
b. A sawtooth wave of amplitude 2
c. A triangle wave of amplitude 5

Exercise 4. The amplitude of a wave of the form $a \cos (\omega t)+b \sin (\omega t)$ is given by $A=$ $\sqrt{a^{2}+b^{2}}$. Use the results of Exercise 1 to show that the amplitude $A_{n}^{\prime}$ of the $n$th summand of the output series (5) is related to the amplitude $A_{n}$ of the $n$th summand of the input series (4) by the equation

$$
\begin{equation*}
A_{n}^{\prime}=\frac{R C \omega_{n} A_{n}}{\sqrt{\left(1-L C \omega_{n}^{2}\right)^{2}+R^{2} C^{2} \omega_{n}^{2}}} \tag{6}
\end{equation*}
$$

where $\omega_{n}=n \pi / p$.

Exercise 5. For the values of $R, L$ and $C$ given in Exercise 3, plot the function

$$
f(\omega)=\frac{R C \omega}{\sqrt{\left(1-L C \omega^{2}\right)^{2}+R^{2} C^{2} \omega^{2}}}
$$

over an appropriate domain. In light of the relationship (6), explain why this type of RLC circuit is sometimes used in applications as a bandpass filter. Where does the maximum of $f(\omega)$ occur in general? What is the maximum value? How is this connected to the "filtering" property of the RLC circuit?

## Instructions

- You may work in a group of up to 4 students. Each student in a group is expected to contribute equally to the project. If you feel that one of your group members is not doing his share, please let me know.
- Your written solutions to the exercises must be typed and submitted as a PDF file. Diagrams produced using Maple must be included in the body of this document. The file you submit should be named using the convention Project1_lastname(s).pdf.
- Your Maple code must be submitted as a separate worksheet file, named using the convention Project1_lastname(s).mw.
- Your PDF and Maple documents must be uploaded to http://tlearn.trinity.edu by 5pm on March 3. Please only upload one copy of each document per group. Late projects will not be accepted.
- Failure to adhere to these guidelines will be penalized. If you have any questions or concerns, please ask me.

