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1 Hyperbolic Functions

For any x, the hyperbolic cosine and hyperbolic sine of x are defined to be

coshx =
ex + e−x

2
,

sinhx =
ex − e−x

2
,

respectively.1 It is straightforward to check that they satisfy the identity

cosh2 x− sinh2 x = 1

as well as the derivative formulae

d

dx
coshx = sinhx,

d

dx
sinhx = coshx.

The names for these functions arise from the fact that they parametrize the (right branch)
H of the hyperbola x2 − y2 = 1 in the same manner that the circular functions sine and
cosine parametrize the circle x2 + y2 = 1. Namely, if we draw a ray R from the origin into
either the first or fourth quadrants, and let A denote the area trapped by R, H and the
x-axis (A is taken to be negative if R has negative slope), as shown in the diagram below,
then the coordinates of the intersection of R and H can be shown to be

x = cosh 2A,

y = sinh 2A.

If we perform the same construction using the unit circle C instead, which is given by
x2 + y2 = 1, we obtain

x = cos 2A,

y = sin 2A.

So the analogy between the circular and hyperbolic functions is that they parametrize dif-
ferent curves, but in the exact same way.

1These are typically read as “kosh of x” and “cinch of x.”
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The parametrization of the hyper-
bola H by the area A, resulting in
the hyperbolic functions.

The parametrization of the unit cir-
cle C by the area A, resulting in the
circular functions.

2 Application: Solutions of Second Order Homogeneous Linear
Constant Coefficient ODEs

Consider the homogeneous linear second order ODE

ay′′ + by′ + cy = 0. (1)

Suppose that the characteristic equation

ar2 + br + c = 0 (2)

has two distinct real roots. According to the quadratic formula, these are given by

−b±
√

∆

2a

where ∆ = b2 − 4ac > 0 is the discriminant of (2).
By the general theory of the solutions to equations of the form (1), the functions

y1 = exp

(
−b+

√
∆

2a
x

)
and y2 = exp

(
−b−

√
∆

2a
x

)
form a basis for the solution space. In particular,

ŷ1 =
y1 + y2

2
= e−bx/2a cosh

(√
∆

2a
x

)
and ŷ2 =

y1 − y2
2

= e−bx/2a sinh

(√
∆

2a
x

)
are both solutions of (1). We contend that ŷ1 and ŷ2 also form a basis for the space of
solutions to (1). Indeed, we have the relationship(

ŷ1
ŷ2

)
=

(
1/2 1/2
1/2 −1/2

)(
y1
y2

)
,
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and since the determinant of the matrix is −1/2 6= 0 we can invert it to express any linear
combination of y1 and y2 as a linear combination of ŷ1 and ŷ2, and vice versa. We have
therefore proven the following useful result.

Theorem 1. If the characteristic equation (2) has distinct real roots

−b±
√

∆

2a
, ∆ = b2 − 4ac > 0,

then the general solution to (1) is

y = e−bx/2a

(
c1 cosh

(√
∆

2a
x

)
+ c2 sinh

(√
∆

2a
x

))
,

and every pair (c1, c2) yields a distinct solution.

Example 1. Find the general solution to y′′ − 4y′ + y = 0.
The characteristic equation is

r2 − 4r + 1 = 0 ⇒ r =
4±
√

12

2
= 2±

√
3.

So Theorem 1 tells us the general solution is given by

y = e2x
(
c1 cosh

(√
3x
)

+ c2 sinh
(√

3x
))

.

�

If ∆ is a perfect square then often times the roots of (2) can be found by factoring the

polynomial, and it might be difficult to identify −b/2a and
√

∆/2a in order to express the
solutions of (1) as in Theorem 1. But we can find them as follows. Suppose the roots of (2)
are r1 > r2. Then

ar2 + br + c = a(r − r1)(r − r2) = a(r2 − (r1 + r2)r + r1r2).

Comparing the coefficients on either end of this equation we find that

b = −a(r1 + r2) and c = ar1r2.

We immediately find that −b/2a = (r1 + r2)/2, the average of the roots. Moreover

∆ = b2 − 4ac = a2(r21 + 2r1r2 + r22)− 4a2r1r2 = a2(r1 − r2)2

so that
√

∆ = |a|(r1 − r2) and
√

∆

2a
=
|a| · (r1 − r2)

2a
= σ(a)

r1 − r2
2

= σ(a)
r1 − r2

2
,

where σ(a) ∈ {±1} is the sign of a. However, the hyperbolic cosine and sine are even and
odd, respectively, so that we may either ignore the sign or factor it out. But in the latter
case the sign can simply be absorbed into the constant c2. We can therefore recast Theorem
1 as follows.
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Theorem 2. If the characteristic equation of (1) has distinct real roots r1 > r2, then the
general solution to (1) is given by

y = e(r1+r2)x/2

(
c1 cosh

(
r1 − r2

2
x

)
+ c2 sinh

(
r1 − r2

2
x

))
,

and every pair (c1, c2) yields a distinct solution.

Example 2. Solve 9y′′ + 3y′ − 2y = 0.
The polynomial occurring in the characteristic equation factors easily:

9r2 + 3r − 2 = (3r + 2)(3r − 1)

so the solutions to the characteristic equation are 1/3 and −2/3. We have r1 + r2 = −1/3
and r1 − r2 = 1. Hence the general solution is

y = e−x/6
(
c1 cosh

(x
2

)
+ c2 sinh

(x
2

))
.

�

3 The Connection Between the Hyperbolic and Circular Func-
tions

Recall Euler’s formula:
eix = cosx+ i sinx. (3)

If we replace x with −x and use the parity of sine and cosine we obtain

e−ix = cosx− i sinx. (4)

If we add (3) to (4) and divide by 2 we arrive at the fundamental relationship

cosx =
eix + e−ix

2
= cosh ix. (5)

Subtracting (4) from (3) and this time dividing by 2i yields

sinx =
eix − e−ix

2i
= −i sinh ix. (6)

If we substitute −ix for x in these two results we find the complementary relationships

coshx = cos ix,

sinhx = −i sin ix.

Let z = x+ iy be an arbitrary complex number with x, y ∈ R. We define

ez = ex+iy = exeiy = ex(cos y + i sin y)
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and through this definition we set

cos z =
eiz + e−iz

2
,

sin z =
eiz − e−iz

2i
,

extending (5) and (6) to complex arguments.
Notice that

cos z =
eiz + e−iz

2
=
eix−y + e−ix+y

2

=
eix−y + eix+y − eix+y + e−ix+y

2
= eix cosh y − iey sinx

= cosx cosh y + i sinx (cosh y − ey)
= cosx cosh y − i sinx sinh y,

which gives the real and imaginary parts of cos z in terms of the real and imaginary parts of
z. In a similar fashion one can establish that

sin z = sinx cosh y + i cosx sinh y.

4 ODEs with Negative Discriminant

Suppose now that ∆ = b2 − 4ac < 0 in (1) so that the roots of (2) are complex conjugates.
Let’s proceed formally and apply the conclusion of Theorem 1 to (1). Using (5) and (6) we
end up with the “solutions”

y = e−bx/2a

(
c1 cosh

(√
∆

2a
x

)
+ c2 sinh

(√
∆

2a
x

))

= e−bx/2a

(
c1 cosh

(
i
√
|∆|

2a
x

)
+ c2 sinh

(
i
√
|∆|

2a
x

))

= e−bx/2a

(
c1 cos

(√
|∆|

2a
x

)
+ ic2 sin

(√
|∆|

2a
x

))
,

which are only hypothetical since they are clearly complex-valued (if c2 6= 0). But if we
absorb the imaginary unit i into c2 and simply “forget” that this makes it non-real, we
arrive at what we know are the genuine solutions to (1):

y = e−bx/2a

(
c1 cos

(√
|∆|

2a
x

)
+ c2 sin

(√
|∆|

2a
x

))
.

The Moral. Up to the fact that we have to allow c2 to be imaginary when ∆ < 0, Theorem
1 applies in every situation in which the characteristic equation (2) has distinct roots.
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