
Heat Conduction in a Rod with Inhomogeneous Neumann

Boundary Conditions

R. C. Daileda

March 2, 2018

Consider the following heat problem,

ut = c2uxx, 0 < x < L, 0 < t,
ux(0, t) = −F1, 0 < t,
ux(L, t) = −F2, 0 < t,
u(x, 0) = f(x), 0 < x < L,

in which we are enforcing (potentially) inhomogeneous Neumann boundary conditions at the
ends of the rod. If φ(x, t) denotes the (rightward) heat flux (thermal energy per unit time
flowing to the right) throughout the rod (at position x and time t), then Fourier’s law of
heat conduction states that

φ(x, t) = −K0ux(x, t), (1)

where K0 > 0 is the thermal conductivity of the rod material. Fourier’s law is a quantitative
formulation of the fact that thermal energy moves “downhill,” i.e. from hotter regions to
cooler regions.

In light of Fourier’s law, we find that our boundary conditions are equivalent to

φ(0, t) = K0F1,

φ(L, t) = K0F2,

for all t > 0. That is, the amount of energy per unit time flowing into the left end of the rod
is constantly K0F1 while the amount per unit time flowing out of the right end is constantly
K0F2.1 Since the rates at which thermal energy enters and leaves the ends of rod do not
depend on time, we suspect that the same will (eventually) hold throughout the rod, that is

φ(x, t) = φ(x).

Substituting a time-independent heat flux into Fourier’s law (1) and integrating with
respect to x tell us that

u(x, t) = f(x) + g(t),

at least eventually. Substitution of this expression for the temperature into the heat equation
yields

g′(t) = c2f ′′(x) ⇒ both sides are constant.

1If F1 or F2 is negative, so is the heat flux, which means thermal energy is actually moving to the left.
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Setting f ′′(x) = A we find that g′(t) = c2A, and integration of these expressions gives us

f(x) =
A

2
x2 +Bx+ C,

g(t) = c2At+D,

for some constants B,C and D. Since u = f + g, imposing the initial condition at x = 0
and x = L tells us that we need

−F1 = ux(0, t) = f ′(0) = B,

−F2 = ux(L, t) = f ′(L) = AL+B.

We immediately find that A = F1−F2

L
and hence that

f(x) =
F1 − F2

2L
x2 − F1x+ C.

Therefore

u(x, t) = f(x) + g(t) =
F1 − F2

2L
x2 − F1x+

c2(F1 − F2)

L
t+ (C +D)︸ ︷︷ ︸

C0

. (2)

This represents the eventual state of the temperature throughout the rod, although we cannot
determine C0 without additional information.

If we subtract C0 from the solution (2), superposition guarantees that u will still solve
the heat equation and satisfy the constant heat flux boundary conditions. This yields what
we will call the homogenizer of the original boundary value problem:

u1(x, t) =
F1 − F2

2L
x2 − F1x+

c2(F1 − F2)

L
t. (3)

We have reasoned heuristically that, up to a constant, this gives the long term evolution of
the temperature in the rod, a fact that we will soon derive analytically.

If we let v = u − u1, where u is the solution to the original problem, then superposition
tells us that v satisfies

vt = c2vxx, 0 < x < L, 0 < t,
vx(0, t) = 0, 0 < t,
vx(L, t) = 0, 0 < t,
v(x, 0) = f(x)− u1(x, 0), 0 < x < L,

a heat conduction problem with homogeneous Neumann boundary conditions and a modified
initial condition. Hence the name for u1.

We know (see Example 1 of section 3.6 of our text) that if

a0 +
∞∑
n=1

an cos
(nπx
L

)
is the 2L-periodic cosine expansion of the initial condition f(x)−u1(x, 0), then v is given by

v(x, t) = a0 +
∞∑
n=1

ane
−λ2nt cos

(nπx
L

)
,
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where λn = cnπ/L. It finally follows that

u(x, t) = u1(x, t) + v(x, t) =
F1 − F2

2L
x2 − F1x+

c2(F1 − F2)

L
t+ a0 +

∞∑
n=1

ane
−λ2nt cos

(nπx
L

)
.

Because of the decaying exponential factors, one can show that the series tends (uniformly)
to 0 as t→∞, which means that the long term behavior of the temperature is given by

u∞(x, t) =
F1 − F2

2L
x2 − F1x+

c2(F1 − F2)

L
t+ a0, (4)

as we expected.
Note that we have finally determined C +D from (2): it’s just

a0 =
1

L

∫ L

0

f(x)− u1(x, 0) dx = â0 +
L(2F1 + F2)

6
.

Here â0 is the constant coefficient in the 2L-periodic cosine expansion of the initial temper-
ature profile f(x), which is just the average initial temperature in the rod. By using the
expression (3) for the homogenizer and the integral formulae for cosine expansion coefficients
one can likewise show that

an = ân +
2L ((−1)nF2 − F1)

π2n2

with ân denoting the nth coefficient of the 2L-periodic cosine expansion of f(x). Conse-
quently we once again see the phenomenon of a priori knowledge of the half-range cosine
expansion of f(x) yielding the solution to the original boundary value problem almost im-
mediately.

The behavior of u∞ is relatively simple and easy to understand. Equation (4) shows that:

1. If F1 > F2, then the graph of u∞(x, t) versus x is an upward opening parabola that
moves upward with a speed of c2(F1 − F2)/L. This occurs because the rate at which
thermal energy enters the left end of the rod exceeds the rate at which it leaves the
right end.

2. If F1 < F2, then the graph of u∞(x, t) versus x is a downward opening parabola that
moves downward ward with a speed of c2(F1 − F2)/L. This occurs because the rate at
which thermal energy leaves the right end of the rod exceeds the rate at which it enters
the left end.

3. If F1 = F2, then u∞ is the steady state

−F1x+ â0 +
LF1

2
,

which is a line of slope −F1 that passes through the average initial temperature at the
midpoint of the rod. We get an eventual steady state because thermal energy is entering
and leaving the two ends of the rod at exactly the same rate.
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