The two dimensional wave equation

R. C. Daileda

Trinity University
\section*{Partial Differential Equations}
Lecture 11

Vibrating membranes

Goal: Model the motion of an ideal elastic membrane.
Set up: Assume the membrane at rest is a region of the $x y$-plane and let

$$
u(x, y, t)=\left\{\begin{array}{l}
\text { vertical deflection of membrane from equilib- } \\
\text { rium at position }(x, y) \text { and time } t .
\end{array}\right.
$$

For a fixed t, the surface $z=u(x, y, t)$ gives the shape of the membrane at time t.

Under ideal assumptions (e.g. uniform membrane density, uniform tension, no resistance to motion, small deflection, etc.) one can show that u satisfies the two dimensional wave equation

$$
u_{t t}=c^{2} \Delta u=c^{2}\left(u_{x x}+u_{y y}\right) .
$$

Rectangular membranes

We assume the membrane lies over the rectangular region $R=[0, a] \times[0, b]$ and has fixed edges.

These facts are expressed by the boundary conditions

$$
\begin{array}{ll}
u(0, y, t)=u(a, y, t)=0, & 0 \leq y \leq b, t>0, \\
u(x, 0, t)=u(x, b, t)=0, & 0 \leq x \leq a, t>0
\end{array}
$$

We must also specify how the membrane is initially deformed and set into motion. This is done via the initial conditions

$$
\begin{aligned}
u(x, y, 0) & =f(x, y), & & (x, y) \in R \\
u_{t}(x, y, 0) & =g(x, y), & & (x, y) \in R .
\end{aligned}
$$

New goal: solve the 2-D wave equation subject to the boundary and initial conditions just given.

As usual, we will:

- Use separation of variables to find separated solutions satisfying the homogeneous boundary conditions; and
- Use the principle of superposition to build up a series solution that satisfies the initial conditions as well.

Separation of variables

We seek nontrivial solutions of the form

$$
u(x, y, t)=X(x) Y(y) T(t)
$$

Plugging this into $u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right)$ we get

$$
X Y T^{\prime \prime}=c^{2}\left(X^{\prime \prime} Y T+X Y^{\prime \prime} T\right) \Rightarrow \frac{T^{\prime \prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}
$$

Because the two sides are functions of different independent variables, they must be constant:

$$
\frac{T^{\prime \prime}}{c^{2} T}=A=\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y} \Rightarrow\left\{\begin{array}{l}
T^{\prime \prime}-c^{2} A T=0, \\
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}+A .
\end{array}\right.
$$

Since the two sides again involve unrelated variables, both are constant:

$$
\frac{X^{\prime \prime}}{X}=B=-\frac{Y^{\prime \prime}}{Y}+A .
$$

Setting $C=A-B$, these equations can be rewritten as

$$
X^{\prime \prime}-B X=0, \quad Y^{\prime \prime}-C Y=0 .
$$

The first boundary condition is

$$
0=u(0, y, t)=X(0) Y(y) T(t)
$$

Canceling Y and T yields $X(0)=0$. Likewise, we obtain

$$
X(a)=0, \quad Y(0)=Y(b)=0
$$

There are no boundary conditions on T.

We have already solved the two boundary value problems for X and Y. The nontrivial solutions are

$$
\begin{array}{lrl}
X=X_{m}(x)=\sin \left(\mu_{m} x\right), & \mu_{m}=\frac{m \pi}{a}, & m \in \mathbb{N} \\
Y=Y_{n}(y)=\sin \left(\nu_{n} y\right), & \nu_{n}=\frac{n \pi}{b}, & n \in \mathbb{N}
\end{array}
$$

with separation constants $B=-\mu_{m}^{2}$ and $C=-\nu_{n}^{2}$.
Since $T^{\prime \prime}-c^{2} A T=0$, and $A=B+C=-\left(\mu_{m}^{2}+\nu_{n}^{2}\right)<0$,

$$
T=T_{m n}(t)=B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)
$$

where

$$
\lambda_{m n}=c \sqrt{\mu_{m}^{2}+\nu_{n}^{2}}=c \pi \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}} .
$$

These are the characteristic frequencies of the membrane.

Normal modes

Assembling our results, we find that for any pair $m, n \in \mathbb{N}$ we have the normal mode

$$
\begin{aligned}
u_{m n}(x, y, t) & =X_{m}(x) Y_{n}(y) T_{m n}(t) \\
& =\sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right)\left(B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right) \\
& =A_{m n} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) \cos \left(\lambda_{m n} t-\phi_{m n}\right)
\end{aligned}
$$

Remarks: Note that the normal modes:

- oscillate spatially with frequency $\mu_{m} / 2 \pi=m / 2 a$ in the x-direction,
- oscillate spatially with frequency $\nu_{n} / 2 \pi=n / 2 b$ in the y-direction,
- oscillate temporally with frequency $\lambda_{m n} / 2 \pi$.
- While $\mu_{m} / 2 \pi$ and $\nu_{n} / 2 \pi$ are simply multiples of $1 / 2 a$ and $1 / 2 b$, respectively, $\lambda_{m n} / 2 \pi$ is not a multiple of any basic frequency.

Superposition and initial conditions

Superposition gives the general solution

$$
u(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right)\left(B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right)
$$

The initial conditions will determine the coefficients $B_{m n}$ and $B_{m n}^{*}$. Setting $t=0$ yields

$$
\begin{aligned}
f(x, y)=u(x, y, 0) & =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{m n} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \\
g(x, y)=u_{t}(x, y, 0) & =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \lambda_{m n} B_{m n}^{*} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) .
\end{aligned}
$$

These are examples of double Fourier series.

Representability

Which functions are given by double Fourier series?
The following result partially answers this first question.

Theorem

If $f(x, y)$ is a C^{2} function on the rectangle $[0, a] \times[0, b]$, then

$$
f(x, y)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{m n} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right)
$$

for appropriate $B_{m n}$.

- To say that $f(x, y)$ is a C^{2} function means that f as well as its first and second order partial derivatives are all continuous.
- While not as general as the Fourier representation theorem, this result is sufficient for our applications.

Orthogonality (again!)

How can we compute the coefficients in a double Fourier series?
The following result helps us answer this second question.

Theorem

The functions

$$
Z_{m n}(x, y)=\sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right), \quad m, n \in \mathbb{N}
$$

are pairwise orthogonal relative to the inner product

$$
\langle f, g\rangle=\int_{0}^{a} \int_{0}^{b} f(x, y) g(x, y) d y d x
$$

This is easily verified using the orthogonality of the functions $\sin (n \pi x / p)$ on the interval $[0, p]$.

Using the usual argument, it follows that if

$$
f(x, y)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{m n} \underbrace{\sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right)}_{Z_{m n}},
$$

then

$$
\begin{aligned}
B_{m n} & =\frac{\left\langle f, Z_{m n}\right\rangle}{\left\langle Z_{m n}, Z_{m n}\right\rangle}=\frac{\int_{0}^{a} \int_{0}^{b} f(x, y) Z_{m n}(x, y) d y d x}{\int_{0}^{a} \int_{0}^{b} Z_{m n}(x, y)^{2} d y d x} \\
& =\frac{4}{a b} \int_{0}^{a} \int_{0}^{b} f(x, y) \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) d y d x
\end{aligned}
$$

So, we can finally write down the complete solution to our original problem.

Conclusion

Theorem

Suppose that $f(x, y)$ and $g(x, y)$ are C^{2} functions on the rectangle $[0, a] \times[0, b]$. The solution to the vibrating membrane problem is given by $u(x, y, t)=$

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right)\left(B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right)
$$

where $\mu_{m}=\frac{m \pi}{a}, \nu_{n}=\frac{n \pi}{b}, \lambda_{m n}=c \sqrt{\mu_{m}^{2}+\nu_{n}^{2}}$, and

$$
\begin{aligned}
& B_{m n}=\frac{4}{a b} \int_{0}^{a} \int_{0}^{b} f(x, y) \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) d y d x \\
& B_{m n}^{*}=\frac{4}{a b \lambda_{m n}} \int_{0}^{a} \int_{0}^{b} g(x, y) \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) d y d x .
\end{aligned}
$$

Example

A 2×3 rectangular membrane has $c=6$. If we deform it to have shape given by

$$
f(x, y)=x y(2-x)(3-y),
$$

keep its edges fixed, and release it at $t=0$, find an expression that gives the shape of the membrane for $t>0$.

We must compute the coefficients $B_{m n}$ and $B_{m n}^{*}$. Since $g(x, y)=0$ we immediately have

$$
B_{m n}^{*}=0
$$

We also have

$$
\begin{aligned}
B_{m n} & =\frac{4}{2 \cdot 3} \int_{0}^{2} \int_{0}^{3} x y(2-x)(3-y) \sin \left(\frac{m \pi}{2} x\right) \sin \left(\frac{n \pi}{3} y\right) d y d x \\
& =\frac{2}{3} \int_{0}^{2} x(2-x) \sin \left(\frac{m \pi}{2} x\right) d x \int_{0}^{3} y(3-y) \sin \left(\frac{n \pi}{3} y\right) d y \\
& =\frac{2}{3}\left(\frac{16\left(1+(-1)^{m+1}\right)}{\pi^{3} m^{3}}\right)\left(\frac{54\left(1+(-1)^{n+1}\right)}{\pi^{3} n^{3}}\right) \\
& =\frac{576}{\pi^{6}} \frac{\left(1+(-1)^{m+1}\right)\left(1+(-1)^{n+1}\right)}{m^{3} n^{3}}
\end{aligned}
$$

The coefficients $\lambda_{m n}$ are given by

$$
\lambda_{m n}=c \sqrt{\mu_{n}^{2}+\nu_{n}^{2}}=6 \pi \sqrt{\frac{m^{2}}{4}+\frac{n^{2}}{9}}=\pi \sqrt{9 m^{2}+4 n^{2}}
$$

Assembling all of these pieces yields

$$
\begin{aligned}
u(x, y, t)= & \frac{576}{\pi^{6}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left(\frac{\left(1+(-1)^{m+1}\right)\left(1+(-1)^{n+1}\right)}{m^{3} n^{3}} \sin \left(\frac{m \pi}{2} x\right)\right. \\
& \left.\times \sin \left(\frac{n \pi}{3} y\right) \cos \left(\pi \sqrt{9 m^{2}+4 n^{2}} t\right)\right)
\end{aligned}
$$

Example

Suppose in the previous example we also impose an initial velocity given by $g(x, y)=8 \sin 2 \pi x$. Find an expression that gives the shape of the membrane for $t>0$.

Since we have the same initial shape, $B_{m n}$ don't change. We only need to find $B_{m n}^{*}$ and add the appropriate terms to the previous solution.

Using $\lambda_{m n}$ computed above, we have

$$
\begin{aligned}
B_{m n}^{*} & =\frac{4}{2 \cdot 3 \pi \sqrt{9 m^{2}+4 n^{2}}} \int_{0}^{2} \int_{0}^{3} 8 \sin (2 \pi x) \sin \left(\frac{m \pi}{2} x\right) \sin \left(\frac{n \pi}{3} y\right) d y d x \\
& =\frac{16}{3 \pi \sqrt{9 m^{2}+4 n^{2}}} \int_{0}^{2} \sin (2 \pi x) \sin \left(\frac{m \pi}{2} x\right) d x \int_{0}^{3} \sin \left(\frac{n \pi}{3} y\right) d y
\end{aligned}
$$

The first integral is zero unless $m=4$, i.e. $B_{m n}^{*}=0$ for $m \neq 4$.

Evaluating the second integral, we have

$$
B_{4 n}^{*}=\frac{8}{3 \pi \sqrt{36+n^{2}}} \frac{3\left(1+(-1)^{n+1}\right)}{n \pi}=\frac{8\left(1+(-1)^{n+1}\right)}{\pi^{2} n \sqrt{36+n^{2}}} .
$$

So the velocity dependent term of the solution is

$$
\begin{aligned}
u_{2}(x, y, t) & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n}^{*} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) \sin \left(\lambda_{m n} t\right) \\
& =\frac{8 \sin (2 \pi x)}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1+(-1)^{n+1}}{n \sqrt{36+n^{2}}} \sin \left(\frac{n \pi}{3} y\right) \sin \left(2 \pi \sqrt{36+n^{2}} t\right)
\end{aligned}
$$

If we let $u_{1}(x, y, t)$ denote the solution to the first example, the complete solution here is

$$
u(x, y, t)=u_{1}(x, y, t)+u_{2}(x, y, t)
$$

