The two dimensional wave equation

R. C. Daileda
@
Trinity University

Partial Differential Equations
Lecture 11

Daileda The 2-D wave equation



The 2D wave equation

Vibrating membranes

Goal: Model the motion of an ideal elastic membrane.

Set up: Assume the membrane at rest is a region of the xy-plane
and let

vertical deflection of membrane from equilib-
rium at position (x,y) and time t.

oty t) =

For a fixed t, the surface z = u(x, y, t) gives the shape of the
membrane at time t.

Under ideal assumptions (e.g. uniform membrane density, uniform
tension, no resistance to motion, small deflection, etc.) one can
show that u satisfies the two dimensional wave equation

Uy = c2Au = c2(uXX + uyy).

Daileda The 2-D wave equation



The 2D wave equation

Rectangular membranes

We assume the membrane lies over the rectangular region
R =0, a] x [0, b] and has fixed edges.
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These facts are expressed by the boundary conditions

0<y<bh t>0,
0<x<a t>0.

u(0,y,t) = u(a,y, t)

-0,
u(x,0,t) = u(x, b, t) =0,
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The 2D wave equation

We must also specify how the membrane is initially deformed and
set into motion. This is done via the initial conditions

u(x,y,0) = f(x,y), (x,y) €R,
ut(x,y,O):g(x,y), (X,y)ER.

New goal: solve the 2-D wave equation subject to the boundary
and initial conditions just given.

As usual, we will:

@ Use separation of variables to find separated solutions
satisfying the homogeneous boundary conditions; and

@ Use the principle of superposition to build up a series solution
that satisfies the initial conditions as well.
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Separation of variables

Separation of variables

We seek nontrivial solutions of the form

u(x,y, t) = X(x)Y(y) T(t).
Plugging this into uy = c?(Ux + Uyy) we get

T// X/l Y/l
XYT" =2 (X"YT + XY"T — =
c ( + ) = 2T % + v

Because the two sides are functions of different independent
variables, they must be constant:

T" — AT =0,
T// X// Y//
LA
T Xy 7 XY
X~y
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Separation of variables

Since the two sides again involve unrelated variables, both are

constant: X" v
— =B=—-— +A
X Y +

Setting C = A — B, these equations can be rewritten as

X"-BX =0 Y'-CY=0.

The first boundary condition is
0=u(0,y,t) = X(0)Y(y)T(2).

Canceling Y and T yields X(0) = 0. Likewise, we obtain

There are no boundary conditions on T.
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Separation of variables

We have already solved the two boundary value problems for X
and Y. The nontrivial solutions are

X = Xm(x) = sin(umx), m = ?, meN,
. nm
Y = Ya(y) = sin(vny), Vn = neN,
with separation constants B = —u2 and C = —v2.

Since T" — c?AT =0, andA:B-l-C:—(/J%n‘f'VrZr) <0,

T = Tmn(t) = Bmn cos(Amnt) + By, Sin(Amnt),

/ m2  n?
)\mn:C :u%nWLV?y:CTr ?+b2

where

These are the characteristic frequencies of the membrane.
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Separation of variables

Normal modes

Assembling our results, we find that for any pair m,n € N we have
the normal mode

Umn(X, ¥ t) = Xin(x) Ya(y) Trmn(t)
= sin(mx) sin(vny) (Bmn cos(Amnt) + By sin(Amnt))
= Amn sin(mx) sin(vny) cos(Amnt — ¢mn)

Remarks: Note that the normal modes:

@ oscillate spatially with frequency p,/2m = m/2a in the
x-direction,

e oscillate spatially with frequency v,/27m = n/2b in the
y-direction,

e oscillate temporally with frequency Apn/27.

e While pipm/2m and v, /27 are simply multiples of 1/2a and
1/2b, respectively, Amn/2m is not a multiple of any basic
frequency.
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Superposition

Superposition and initial conditions

Superposition gives the general solution

u(x,y,t) = sin(pmx) sin(vpy) (Bmn €os(Amnt) + By sin(Amnt)) .

The initial conditions will determine the coefficients B, and B},
Setting t = 0 yields

f(x,y) =u(x,y,0 Z Z B sin (—x) sin (nb y)

n=1m=1
g(x,y) = ue(x,y,0) = nio:lmio:l)\mnB;n sin (?x) sin <n£y) .

These are examples of double Fourier series.
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Superposition

Representability

Which functions are given by double Fourier series?

The following result partially answers this first question.

If f(x,y) is a C? function on the rectangle [0, a] x [0, b], then

f(x,y) = Z Z B sin (—x) sin ( b y)

n=1 m=1

for appropriate Bp,.

e To say that f(x,y) is a C? function means that f as well as
its first and second order partial derivatives are all continuous.

@ While not as general as the Fourier representation theorem,
this result is sufficient for our applications.
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Superposition

Orthogonality (again!)

How can we compute the coefficients in a double Fourier series?

The following result helps us answer this second question.

The functions

Zmn(x,y) = sin (?x) sin (%y) , mneN

are pairwise orthogonal relative to the inner product

a rb
<fag>:/0/0 f(x,y)g(x,y)dy dx.

This is easily verified using the orthogonality of the functions
sin(nmx/p) on the interval [0, p].
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Superposition

Using the usual argument, it follows that if

f(x,y) = i i Bmnsin (%x) sin (n—;ry>,

n=1 m=1

Zmn

then

a rb
(F) Zom) :/0/0 f(x,¥)Zmn(x,y) dy dx

™ Zony Zonn) a b )
// Zmn(x, y)~ dy dx
0 JO

= :;)/Oa/ob f(x,y)sin (?x) sin (%y) dy dx.

So, we can finally write down the complete solution to our original
problem.
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Superposition

Conclusion

Suppose that f(x,y) and g(x,y) are C? functions on the rectangle
[0, a] x [0, b]. The solution to the vibrating membrane problem is
given by u(x,y,t) =

o0 (0.0}
Z Z sin(mx) sin(vny) (Bmn cos(Amnt) + B, sin(Amnt))
where iy = %, Vpn = n%r, Amn = Cv :u:2'n + V,%, and

4 a b
Bpn = — / / f(x,y)sin(umx)sin(vny) dy dx,
ab 0 0

4 a b
B = é’b/\mn/o /0 g(x,y)sin(umx) sin(vny) dy dx.
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Example
A 2 x 3 rectangular membrane has c = 6. If we deform it to have
shape given by

f(x,y) =xy(2 - x)(3-y),

keep its edges fixed, and release it at t = 0, find an expression that
gives the shape of the membrane for t > 0.
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We must compute the coefficients Bp,, and By,,. Since
g(x,y) = 0 we immediately have

B, =0.

We also have

an =

4 2 r3
2.3/0 /0 xy(2 —x)(3 — y)sin (?x) sin (%y) dy dx
2

§/0 x(2 = x)sin (77x) dX/03y(3 —y)sin () dy
2 (16(1+(=1)")\ (54(1 + (=1)"")
(e ) )

3 m3m3 m3n3
576 (1+ (—1)™1)(1 + (—-1)"*1)
6 m3n3 '

Daileda The 2-D wave equation



The coefficients A, are given by

Amn = C\/ 2 + V2 = 67 —+——7T\/9m2+4n2

Assembling all of these pieces yields

o0 =70 3 3 (HHEDEE N  n ()

n=1m=1

X sin (%y) cos (77\/ 9m?2 + 4n? t>> :
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Suppose in the previous example we also impose an initial velocity
given by g(x,y) = 8sin2mx. Find an expression that gives the
shape of the membrane for t > Q.

Since we have the same initial shape, B, don't change. We only
need to find B}, and add the appropriate terms to the previous
solution.

Using A\,n, computed above, we have

*

4 2 3 mm nm
B, = 8sin(2mx)sin { —x | sin { —y | dy dx
2-377\/9m2+4n// (2mx) (2 ) <3y> Y
16 3 nm
sin(27x) sin [ —x dx/ sin dy.
37r\/9m2 + 4n? ) ( 2 ) 0 ( 3 y) 4

The first integral is zero unless m = 4, i.e. B, = 0 for m # 4.
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Evaluating the second integral, we have

gt 8 3(1+(—1)"1)  8(1+(—1)"t1)
T 30\/36 + n2 nm 2036 + n2

So the velocity dependent term of the solution is
u(x,y, t) = Z ZB sin (umx) sin (vpy) sin (Amnt)
m=1 n=1
(mTy) sin (277\/ 36 + n2t) |

n+1

85|n 27rx Z
] n\/36+n

If we let u1(x, y, t) denote the solution to the first example, the
complete solution here is

U(Xaya t) = UI(X).y) t) + UZ(X7y7 t)
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