The two-dimensional heat equation

Ryan C. Daileda

Trinity University

Partial Differential Equations
 Lecture 12

Physical motivation

Goal: Model heat flow in a two-dimensional object (thin plate).
Set up: Represent the plate by a region in the $x y$-plane and let

$$
u(x, y, t)=\left\{\begin{array}{l}
\text { temperature of plate at position }(x, y) \text { and } \\
\text { time } t .
\end{array}\right.
$$

For a fixed t, the height of the surface $z=u(x, y, t)$ gives the temperature of the plate at time t and position (x, y).

Under ideal assumptions (e.g. uniform density, uniform specific heat, perfect insulation along faces, no internal heat sources etc.) one can show that u satisfies the two dimensional heat equation

$$
u_{t}=c^{2} \Delta u=c^{2}\left(u_{x x}+u_{y y}\right)
$$

Rectangular plates and boundary conditions

For now we assume:

- The plate is rectangular, represented by $R=[0, a] \times[0, b]$.

- The plate is imparted with some initial temperature:

$$
u(x, y, 0)=f(x, y), \quad(x, y) \in R
$$

- The edges of the plate are held at zero degrees:

$$
\begin{array}{ll}
u(0, y, t)=u(a, y, t)=0, & 0 \leq y \leq b, t>0, \\
u(x, 0, t)=u(x, b, t)=0, & 0 \leq x \leq a, t>0 .
\end{array}
$$

Separation of variables

Assuming that $u(x, y, t)=X(x) Y(y) T(t)$, and proceeding as we did with the 2-D wave equation, we find that

$$
\begin{aligned}
& X^{\prime \prime}-B X=0, \quad X(0)=X(a)=0, \\
& Y^{\prime \prime}-C Y=0, \quad Y(0)=Y(b)=0, \\
& T^{\prime}-c^{2}(B+C) T=0
\end{aligned}
$$

We have already solved the first two of these problems:

$$
\begin{array}{lll}
X=X_{m}(x)=\sin \left(\mu_{m} x\right), & \mu_{m}=\frac{m \pi}{a}, & B=-\mu_{m}^{2} \\
Y=Y_{n}(y)=\sin \left(\nu_{n} y\right), & \nu_{n}=\frac{n \pi}{b}, & C=-\nu_{n}^{2},
\end{array}
$$

for $m, n \in \mathbb{N}$. It then follows that

$$
T=T_{m n}(t)=A_{m n} e^{-\lambda_{m n}^{2} t}, \quad \lambda_{m n}=c \sqrt{\mu_{m}^{2}+\nu_{n}^{2}}=c \pi \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}}
$$

Superposition

Assembling these results, we find that for any pair $m, n \geq 1$ we have the normal mode
$u_{m n}(x, y, t)=X_{m}(x) Y_{n}(y) T_{m n}(t)=A_{m n} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) e^{-\lambda_{m n}^{2} t}$.
The principle of superposition gives the general solution

$$
u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) e^{-\lambda_{m n}^{2} t} .
$$

The initial condition requires that

$$
f(x, y)=u(x, y, 0)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{m n} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right),
$$

which is just the double Fourier series for $f(x, y)$.

Conclusion

Theorem

If $f(x, y)$ is a "sufficiently nice" function on $[0, a] \times[0, b]$, then the solution to the heat equation with homogeneous Dirichlet boundary conditions and initial condition $f(x, y)$ is

$$
u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) e^{-\lambda_{m n}^{2} t}
$$

where $\mu_{m}=\frac{m \pi}{a}, \nu_{n}=\frac{n \pi}{b}, \lambda_{m n}=c \sqrt{\mu_{m}^{2}+\nu_{n}^{2}}$, and

$$
A_{m n}=\frac{4}{a b} \int_{0}^{a} \int_{0}^{b} f(x, y) \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) d y d x
$$

Example

A 2×2 square plate with $c=1 / 3$ is heated in such a way that the temperature in the lower half is 50, while the temperature in the upper half is 0 . After that, it is insulated laterally, and the temperature at its edges is held at 0 . Find an expression that gives the temperature in the plate for $t>0$.

We must solve the heat problem above with $a=b=2$ and

$$
f(x, y)= \begin{cases}50 & \text { if } y \leq 1 \\ 0 & \text { if } y>1\end{cases}
$$

The coefficients in the solution are

$$
\begin{aligned}
A_{m n} & =\frac{4}{2 \cdot 2} \int_{0}^{2} \int_{0}^{2} f(x, y) \sin \left(\frac{m \pi}{2} x\right) \sin \left(\frac{n \pi}{2} y\right) d y d x \\
& =50 \int_{0}^{2} \sin \left(\frac{m \pi}{2} x\right) d x \int_{0}^{1} \sin \left(\frac{n \pi}{2} y\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& =50\left(\frac{2\left(1+(-1)^{m+1}\right)}{\pi m}\right)\left(\frac{2\left(1-\cos \frac{n \pi}{2}\right)}{\pi n}\right) \\
& =\frac{200}{\pi^{2}} \frac{\left(1+(-1)^{m+1}\right)\left(1-\cos \frac{n \pi}{2}\right)}{m n}
\end{aligned}
$$

Since $\lambda_{m n}=\frac{\pi}{3} \sqrt{\frac{m^{2}}{4}+\frac{n^{2}}{4}}=\frac{\pi}{6} \sqrt{m^{2}+n^{2}}$, the solution is

$$
\begin{aligned}
u(x, y, t)= & \frac{200}{\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(\frac{\left(1+(-1)^{m+1}\right)\left(1-\cos \frac{n \pi}{2}\right)}{m n} \sin \left(\frac{m \pi}{2} x\right)\right. \\
& \left.\times \sin \left(\frac{n \pi}{2} y\right) e^{-\pi^{2}\left(m^{2}+n^{2}\right) t / 36}\right) .
\end{aligned}
$$

Inhomogeneous boundary conditions

Steady state solutions and Laplace's equation

2-D heat problems with inhomogeneous Dirichlet boundary conditions can be solved by the "homogenizing" procedure used in the 1-D case:

1. Find and subtract the steady state ($u_{t} \equiv 0$);
2. Solve the resulting homogeneous problem;
3. Add the steady state to the result of Step 2.

We will focus only on finding the steady state part of the solution. Setting $u_{t}=0$ in the 2-D heat equation gives

$$
\Delta u=u_{x x}+u_{y y}=0 \quad \text { (Laplace's equation) }
$$

solutions of which are called harmonic functions.

Dirichlet problems

Definition: The Dirichlet problem on a region $R \subseteq \mathbb{R}^{2}$ is the boundary value problem

$$
\begin{aligned}
& \Delta u=0 \text { inside } R, \\
& u(x, y)=f(x, y) \text { on } \partial R .
\end{aligned}
$$

When the region is a rectangle $R=[0, a] \times[0, b]$, the boundary conditions will be given on each edge separately as:

$$
\begin{array}{lll}
u(x, 0)=f_{1}(x), & u(x, b)=f_{2}(x), & 0<x<a, \\
u(0, y)=g_{1}(y), & u(a, y)=g_{2}(y), & 0<y<b .
\end{array}
$$

Solving the Dirichlet problem on a rectangle

 'Homogenization and superpositionStrategy: Reduce to four simpler problems and use superposition.

$=$

Remarks:

- If u_{A}, u_{B}, u_{C} and u_{D} solve the Dirichlet problems (A), (B), (C) and (D), then the solution to $(*)$ is

$$
u=u_{A}+u_{B}+u_{C}+u_{D}
$$

- Note that the boundary conditions in (A) - (D) are all homogeneous, with the exception of a single edge.
- Problems with inhomogeneous Neumann or Robin boundary conditions (or combinations thereof) can be reduced in a similar manner.

Solution of the Dirichlet problem on a rectangle

 Case BGoal: Solve the boundary value problem (B):

$$
\begin{aligned}
\Delta u & =0, & & 0<x<a, \\
u(x, 0) & =0, u(x, b)=f_{2}(x), & & 0<x<a, \\
u(0, y) & =u(a, y)=0, & & 0<y<b .
\end{aligned}
$$

Setting $u(x, y)=X(x) Y(y)$ leads to

$$
\begin{aligned}
X^{\prime \prime}+k X=0, & Y^{\prime \prime}-k Y=0 \\
X(0)=X(a)=0, & Y(0)=0
\end{aligned}
$$

We know the nontrivial solutions for X are given by

$$
X(x)=X_{n}(x)=\sin \left(\mu_{n} x\right), \quad \mu_{n}=\frac{n \pi}{a}, \quad k=\mu_{n}^{2} \quad(n \in \mathbb{N}) .
$$

Interlude

The hyperbolic trigonometric functions
The hyperbolic cosine and sine functions are

$$
\cosh y=\frac{e^{y}+e^{-y}}{2}, \quad \sinh y=\frac{e^{y}-e^{-y}}{2} .
$$

They satisfy the following identities:

$$
\begin{aligned}
& \cosh ^{2} y-\sinh ^{2} y=1 \\
& \frac{d}{d y} \cosh y=\sinh y, \frac{d}{d y} \sinh y=\cosh y .
\end{aligned}
$$

One can show that the general solution to the ODE $Y^{\prime \prime}-\mu^{2} Y=0$ can (also) be written as

$$
Y=A \cosh (\mu y)+B \sinh (\mu y)
$$

Using $\mu=\mu_{n}$ and $Y(0)=0$, we find

$$
\begin{aligned}
Y(y) & =Y_{n}(y)
\end{aligned}=A_{n} \cosh \left(\mu_{n} y\right)+B_{n} \sinh \left(\mu_{n} y\right) .
$$

This yields the separated solutions

$$
u_{n}(x, y)=X_{n}(x) Y_{n}(y)=B_{n} \sin \left(\mu_{n} x\right) \sinh \left(\mu_{n} y\right)
$$

and superposition gives the general solution

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sin \left(\mu_{n} x\right) \sinh \left(\mu_{n} y\right)
$$

Finally, the top edge boundary condition requires that

$$
f_{2}(x)=u(x, b)=\sum_{n=1}^{\infty} B_{n} \sinh \left(\mu_{n} b\right) \sin \left(\mu_{n} x\right) .
$$

Conclusion

Appealing to the formulae for sine series coefficients, we can now summarize our findings.

Theorem

If $f_{2}(x)$ is piecewise smooth, the solution to the Dirichlet problem

$$
\begin{aligned}
\Delta u & =0, & & 0<x<a \\
u(x, 0) & =0, u(x, b)=f_{2}(x), & & 0<x<a \\
u(0, y) & =u(a, y)=0, & & 0<y<b
\end{aligned}
$$

is

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sin \left(\mu_{n} x\right) \sinh \left(\mu_{n} y\right)
$$

where $\mu_{n}=\frac{n \pi}{a}$ and $B_{n}=\frac{2}{a \sinh \left(\mu_{n} b\right)} \int_{0}^{a} f_{2}(x) \sin \left(\mu_{n} x\right) d x$.

Remark: If we know the sine series expansion for $f_{2}(x)$ on $[0, a]$, then we can use the relationship

$$
B_{n}=\frac{1}{\sinh \left(\mu_{n} b\right)}\left(n \text {th sine coefficient of } f_{2}\right) .
$$

Example

Solve the Dirichlet problem on the square $[0,1] \times[0,1]$, subject to the boundary conditions

$$
\begin{array}{ll}
u(x, 0)=0, u(x, 1)=f_{2}(x), & 0<x<1 \\
u(0, y)=u(1, y)=0, & 0<y<1 .
\end{array}
$$

where

$$
f_{2}(x)= \begin{cases}75 x & \text { if } 0 \leq x \leq \frac{2}{3} \\ 150(1-x) & \text { if } \frac{2}{3}<x \leq 1\end{cases}
$$

We have $a=b=1$. The graph of $f_{2}(x)$ is:

According to exercise 2.4.17 (with $p=1, a=2 / 3$ and $h=50$), the sine series for f_{2} is:

$$
f_{2}(x)=\frac{450}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{2 n \pi}{3}\right)}{n^{2}} \sin (n \pi x) .
$$

Thus,

$$
B_{n}=\frac{1}{\sinh (n \pi)}\left(\frac{450}{\pi^{2}} \frac{\sin \left(\frac{2 n \pi}{3}\right)}{n^{2}}\right)=\frac{450}{\pi^{2}} \frac{\sin \left(\frac{2 n \pi}{3}\right)}{n^{2} \sinh (n \pi)},
$$

and

$$
u(x, y)=\frac{450}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{2 n \pi}{3}\right)}{n^{2} \sinh (n \pi)} \sin (n \pi x) \sinh (n \pi y)
$$

Solution of the Dirichlet problem on a rectangle

 Complete solutionRecall:

Solution of the Dirichlet problem on a rectangle

 Cases A and CSeparation of variables shows that the solution to (A) is

$$
u_{A}(x, y)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{a}\right) \sinh \left(\frac{n \pi(b-y)}{a}\right)
$$

where

$$
A_{n}=\frac{2}{a \sinh \left(\frac{n \pi b}{a}\right)} \int_{0}^{a} f_{1}(x) \sin \left(\frac{n \pi x}{a}\right) d x .
$$

Likewise, the solution to (C) is

$$
u_{C}(x, y)=\sum_{n=1}^{\infty} C_{n} \sinh \left(\frac{n \pi(a-x)}{b}\right) \sin \left(\frac{n \pi y}{b}\right)
$$

with

$$
C_{n}=\frac{2}{b \sinh \left(\frac{n \pi a}{b}\right)} \int_{0}^{b} g_{1}(y) \sin \left(\frac{n \pi y}{b}\right) d y .
$$

Solution of the Dirichlet problem on a rectangle Case D

And the solution to (D) is

$$
u_{D}(x, y)=\sum_{n=1}^{\infty} D_{n} \sinh \left(\frac{n \pi x}{b}\right) \sin \left(\frac{n \pi y}{b}\right),
$$

where

$$
D_{n}=\frac{2}{b \sinh \left(\frac{n \pi a}{b}\right)} \int_{0}^{b} g_{2}(y) \sin \left(\frac{n \pi y}{b}\right) d y .
$$

Remark: The coefficients in each case are just multiples of the Fourier sine coefficients of the nonzero boundary condition, e.g.

$$
D_{n}=\frac{1}{\sinh \left(\frac{n \pi a}{b}\right)}\left(n \text {th sine coefficient of } g_{2} \text { on }[0, b]\right) .
$$

Example

Solve the Dirichlet problem on $[0,1] \times[0,2]$ with the following boundary conditions.

We have $a=1, b=2$ and

$$
f_{1}(x)=2, \quad f_{2}(x)=0, \quad g_{1}(y)=\frac{(2-y)^{2}}{2}, \quad g_{2}(y)=2-y
$$

It follows that $B_{n}=0$ for all n, and the remaining coefficients we need are

$$
\begin{aligned}
& A_{n}=\frac{2}{1 \cdot \sinh \left(\frac{n \pi 2}{1}\right)} \int_{0}^{1} 2 \sin \left(\frac{n \pi x}{1}\right) d x=\frac{4\left(1+(-1)^{n+1}\right)}{n \pi \sinh (2 n \pi)}, \\
& C_{n}=\frac{2}{2 \sinh \left(\frac{n \pi 1}{2}\right)} \int_{0}^{2} \frac{(2-y)^{2}}{2} \sin \left(\frac{n \pi y}{2}\right) d y=\frac{4\left(\pi^{2} n^{2}-2+2(-1)^{n}\right)}{n^{3} \pi^{3} \sinh \left(\frac{n \pi}{2}\right)}, \\
& D_{n}=\frac{2}{2 \sinh \left(\frac{n \pi 1}{2}\right)} \int_{0}^{2}(2-y) \sin \left(\frac{n \pi y}{2}\right) d y=\frac{4}{n \pi \sinh \left(\frac{n \pi}{2}\right)} .
\end{aligned}
$$

The complete solution is thus

$$
\begin{aligned}
u(x, y)= & u_{A}(x, y)+u_{C}(x, y)+u_{D}(x, y) \\
= & \sum_{n=1}^{\infty} \frac{4\left(1+(-1)^{n+1}\right)}{n \pi \sinh (2 n \pi)} \sin (n \pi x) \sinh (n \pi(2-y)) \\
& +\sum_{n=1}^{\infty} \frac{4\left(n^{2} \pi^{2}-2+2(-1)^{n}\right)}{n^{3} \pi^{3} \sinh \left(\frac{n \pi}{2}\right)} \sinh \left(\frac{n \pi(1-x)}{2}\right) \sin \left(\frac{n \pi y}{2}\right) \\
& +\sum_{n=1}^{\infty} \frac{4}{n \pi \sinh \left(\frac{n \pi}{2}\right)} \sinh \left(\frac{n \pi x}{2}\right) \sin \left(\frac{n \pi y}{2}\right) .
\end{aligned}
$$

