The Laplacian in Polar Coordinates

R. C. Daileda

Trinity University
\section*{Partial Differential Equations}

Lecture 13

Polar coordinates

To solve boundary value problems on circular regions, it is convenient to switch from rectangular (x, y) to polar (r, θ) spatial coordinates:

$$
\begin{aligned}
& x=r \cos \theta, \\
& y=r \sin \theta \\
& x^{2}+y^{2}=r^{2}
\end{aligned}
$$

This requires us to express the rectangular Laplacian

$$
\Delta u=u_{x x}+u_{y y}
$$

in terms of derivatives with respect to r and θ.

The chain rule

For any function $f(r, \theta)$, we have the familiar tree diagram and chain rule formulae:

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial x} \\
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial y} \\
\text { or } \\
f_{x}=f_{r} r_{x}+f_{\theta} \theta_{x} \\
f_{y}=f_{r} r_{y}+f_{\theta} \theta_{y}
\end{gathered}
$$

First take $f=u$ to obtain

$$
u_{x}=u_{r} r_{x}+u_{\theta} \theta_{x} \Rightarrow u_{x x}=u_{r} r_{x x}+\left(u_{r}\right)_{x} r_{x}+u_{\theta} \theta_{x x}+\left(u_{\theta}\right)_{x} \theta_{x}
$$

Applying the chain rule with $f=u_{r}$ and then with $f=u_{\theta}$ yields

$$
\begin{aligned}
u_{x x} & =u_{r} r_{x x}+\left(u_{r r} r_{x}+u_{r \theta} \theta_{x}\right) r_{x}+u_{\theta} \theta_{x x}+\left(u_{\theta r} r_{x}+u_{\theta \theta} \theta_{x}\right) \theta_{x} \\
& =u_{r} r_{x x}+u_{r r} r_{x}^{2}+2 u_{r \theta} r_{x} \theta_{x}+u_{\theta} \theta_{x x}+u_{\theta \theta} \theta_{x}^{2}
\end{aligned}
$$

An entirely similar computation using y instead of x also gives

$$
u_{y y}=u_{r} r_{y y}+u_{r r} r_{y}^{2}+2 u_{r \theta} r_{y} \theta_{y}+u_{\theta} \theta_{y y}+u_{\theta \theta} \theta_{y}^{2}
$$

If we add these expressions and collect like terms we get

$$
\begin{aligned}
\Delta u= & u_{r}\left(r_{x x}+r_{y y}\right)+u_{r r}\left(r_{x}^{2}+r_{y}^{2}\right)+2 u_{r \theta}\left(r_{x} \theta_{x}+r_{y} \theta_{y}\right) \\
& +u_{\theta}\left(\theta_{x x}+\theta_{y y}\right)+u_{\theta \theta}\left(\theta_{x}^{2}+\theta_{y}^{2}\right)
\end{aligned}
$$

Differentiate $x^{2}+y^{2}=r^{2}$ with respect to x :

$$
2 x=2 r r_{x} \Rightarrow r_{x}=\frac{x}{r} \Rightarrow r_{x x}=\frac{r-x r_{x}}{r^{2}}=\frac{r^{2}-x^{2}}{r^{3}}=\frac{y^{2}}{r^{3}},
$$

and by symmetry

$$
r_{y}=\frac{y}{r} \quad \text { and } \quad r_{y y}=\frac{x^{2}}{r^{3}} .
$$

Now differentiate $\tan \theta=\frac{y}{x}$ with respect to x and then y :

$$
\begin{aligned}
& \sec ^{2} \theta \theta_{x}=-\frac{y}{x^{2}} \Rightarrow \theta_{x}=-\frac{y \cos ^{2} \theta}{x^{2}}=-\frac{y}{r^{2}} \Rightarrow \theta_{x x}=\frac{2 y}{r^{3}} r_{x}=\frac{2 x y}{r^{4}}, \\
& \sec ^{2} \theta \theta_{y}=\frac{1}{x} \Rightarrow \theta_{y}=\frac{\cos ^{2} \theta}{x}=\frac{x}{r^{2}} \Rightarrow \theta_{y y}=\frac{-2 x}{r^{3}} r_{y}=-\frac{2 x y}{r^{4}}
\end{aligned}
$$

Together these yield

$$
\begin{aligned}
& r_{x x}+r_{y y}=\frac{y^{2}+x^{2}}{r^{3}}=\frac{1}{r}, \quad r_{x}^{2}+r_{y}^{2}=\frac{x^{2}+y^{2}}{r^{2}}=1 . \\
& \theta_{x x}+\theta_{y y}=\frac{2 x y}{r^{4}}+\frac{-2 x y}{r^{4}}=0, \quad \theta_{x}^{2}+\theta_{y}^{2}=\frac{y^{2}+x^{2}}{r^{4}}=\frac{1}{r^{2}}, \\
& r_{x} \theta_{x}+r_{y} \theta_{y}=\frac{-x y}{r^{3}}+\frac{y x}{r^{3}}=0,
\end{aligned}
$$

and we finally obtain

$$
\begin{aligned}
\Delta u= & u_{r}\left(r_{x x}+r_{y y}\right)+u_{r r}\left(r_{x}^{2}+r_{y}^{2}\right)+2 u_{r \theta}\left(r_{x} \theta_{x}+r_{y} \theta_{y}\right) \\
& +u_{\theta}\left(\theta_{x x}+\theta_{y y}\right)+u_{\theta \theta}\left(\theta_{x}^{2}+\theta_{y}^{2}\right) \\
= & \frac{1}{r} u_{r}+u_{r r}+\frac{1}{r^{2}} u_{\theta \theta}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} .
\end{aligned}
$$

Example

Use polar coordinates to show that the function $u(x, y)=\frac{y}{x^{2}+y^{2}}$ is harmonic.

We need to show that $\Delta u=0$. In polar coordinates we have

$$
u(r, \theta)=\frac{r \sin \theta}{r^{2}}=\frac{\sin \theta}{r}
$$

so that

$$
u_{r}=-\frac{\sin \theta}{r^{2}}, \quad u_{r r}=\frac{2 \sin \theta}{r^{3}}, \quad u_{\theta \theta}=\frac{-\sin \theta}{r}
$$

and thus

$$
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=\frac{2 \sin \theta}{r^{3}}-\frac{\sin \theta}{r^{3}}-\frac{\sin \theta}{r^{3}}=0
$$

The Dirichlet problem on a disk

Goal: Solve the Dirichlet problem on a disk of radius a, centered at the origin. In polar coordinates this has the form

$$
\begin{aligned}
& \Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad 0 \leq r<a, \\
& u(a, \theta)=f(\theta), \quad 0 \leq \theta \leq 2 \pi .
\end{aligned}
$$

Remarks:

- We will require that f is 2π-periodic.
- Likewise, we require that $u(r, \theta)$ is 2π-periodic in θ.

Separation of variables

If we assume that $u(r, \theta)=R(r) \Theta(\theta)$ and plug into $\Delta u=0$, we get

$$
\begin{aligned}
R^{\prime \prime} \Theta+\frac{1}{r} R^{\prime} \Theta & +\frac{1}{r^{2}} R \Theta^{\prime \prime}=0 \Rightarrow r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}+\frac{\Theta^{\prime \prime}}{\Theta}=0 \\
& \Rightarrow r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}=-\frac{\Theta^{\prime \prime}}{\Theta}=\lambda
\end{aligned}
$$

This yields the pair of separated ODEs

$$
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0 \quad \text { and } \quad \Theta^{\prime \prime}+\lambda \Theta=0
$$

We also have the "boundary conditions"
Θ is 2π-periodic and $R(0+)$ is finite.

Solving for Θ

The solutions of $\Theta^{\prime \prime}+\lambda \Theta=0$ are periodic only if

$$
\lambda=\mu^{2} \geq 0 \Rightarrow \Theta=a \cos (\mu \theta)+b \sin (\mu \theta)
$$

In order for the period to be 2π we also need

$$
1=\cos (0 \mu)=\cos (2 \pi \mu) \Rightarrow 2 \pi \mu=2 \pi n \Rightarrow \mu=n \in \mathbb{N}_{0}
$$

Hence $\lambda=n^{2}$ and

$$
\Theta=\Theta_{n}=a_{n} \cos (n \theta)+b_{n} \sin (n \theta), \quad n \in \mathbb{N}_{0} .
$$

It follows that R satisfies

$$
r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0
$$

which is called an Euler equation.

Interlude

Euler equations

An Euler equation is a second order ODE of the form

$$
x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0
$$

Its solutions are determined by the roots of its indicial equation

$$
\rho^{2}+(\alpha-1) \rho+\beta=0
$$

Case 1: If the roots are $\rho_{1} \neq \rho_{2}$, then the general solution is

$$
y=c_{1} x^{\rho_{1}}+c_{2} x^{\rho_{2}} .
$$

Case 2: If there is only one root ρ_{1}, then the general solution is

$$
y=c_{1} x^{\rho_{1}}+c_{2} x^{\rho_{1}} \ln x .
$$

Solving for R

The indicial equation of $r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0$ is

$$
\rho^{2}+(1-1) \rho-n^{2}=\rho^{2}-n^{2}=0 \Rightarrow \rho= \pm n .
$$

This means that

$$
\begin{array}{ll}
R=c_{1} r^{n}+c_{2} r^{-n} & (n \neq 0), \\
R=c_{1}+c_{2} \ln r & (n=0)
\end{array}
$$

These will be finite at $r=0$ only if $c_{2}=0$. Setting $c_{1}=a^{-n}$ gives

$$
R=R_{n}=\left(\frac{r}{a}\right)^{n}, \quad n \in \mathbb{N}_{0}
$$

Separated solutions and superposition

We therefore obtain the separated solutions

$$
u_{n}(r, \theta)=R_{n}(r) \Theta_{n}(\theta)=\left(\frac{r}{a}\right)^{n}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right), \quad n \in \mathbb{N}_{0}
$$

Noting that

$$
u_{0}(r, \theta)=\left(\frac{r}{a}\right)^{0}\left(a_{0} \cos 0+b_{0} \sin 0\right)=a_{0}
$$

superposition gives the general solution

$$
u(r, \theta)=a_{0}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right)
$$

Boundary values and conclusion

Imposing our Dirichlet boundary conditions gives

$$
f(\theta)=u(a, \theta)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right),
$$

which is just the ordinary 2π-periodic Fourier series for f !

Theorem

The solution of the Dirichlet problem on the disk of radius a centered at the origin, with boundary condition $u(a, \theta)=f(\theta)$ is $u(r, \theta)=a_{0}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right)$, where

$$
\begin{gathered}
a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta \\
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta, \quad b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta
\end{gathered}
$$

Example

Find the solution to the Dirichlet problem on a disk of radius 3 with boundary values given by

$$
f(\theta)= \begin{cases}\frac{30}{\pi}(\pi+2 \theta) & \text { if } \frac{-\pi}{2} \leq \theta<0 \\ \frac{30}{\pi}(\pi-2 \theta) & \text { if } 0 \leq \theta<\frac{\pi}{2} \\ 0 & \text { if } \frac{\pi}{2} \leq \theta<\frac{3 \pi}{2}\end{cases}
$$

We have $a=3$. The graph of f is

According to exercise 2.3.8 (with $p=\pi, c=30$ and $d=\pi / 2$):

$$
f(\theta)=\frac{15}{2}+\frac{120}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1-\cos (n \pi / 2)}{n^{2}} \cos (n \theta)
$$

Hence, the solution to the Dirichlet problem is

$$
u(r, \theta)=\frac{15}{2}+\frac{120}{\pi^{2}} \sum_{n=1}^{\infty}\left(\frac{r}{3}\right)^{n} \frac{1-\cos (n \pi / 2)}{n^{2}} \cos (n \theta)
$$

Example

Solve the Dirichlet problem on a disk of radius 2 with boundary values given by $f(\theta)=\cos ^{2} \theta$. Express your answer in cartesian coordinates.

We have $a=2$ and

$$
f(\theta)=\cos ^{2} \theta=\frac{1+\cos (2 \theta)}{2}=\frac{1}{2}+\frac{1}{2} \cos (2 \theta),
$$

which is a finite 2π-periodic Fourier series (i.e. $a_{0}=1 / 2$, $a_{2}=1 / 2$, and all other coefficients are zero).
Hence

$$
u(r, \theta)=\frac{1}{2}+\left(\frac{r}{2}\right)^{2} \cdot \frac{1}{2} \cos (2 \theta)=\frac{1}{2}+\frac{r^{2} \cos (2 \theta)}{8} .
$$

Since $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$, we find that

$$
r^{2} \cos (2 \theta)=r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta=x^{2}-y^{2}
$$

and hence

$$
u=\frac{1}{2}+\frac{r^{2} \cos (2 \theta)}{8}=\frac{1}{2}+\frac{x^{2}-y^{2}}{8}
$$

Example

Solve the Dirichlet problem on a disk of radius 1 if the boundary value is 50 in the first quadrant, and zero elsewhere.

We are given $a=1, f(\theta)=50$ for $0 \leq \theta \leq \pi / 2$ and $f(\theta)=0$ otherwise. The Fourier coefficients of f are

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{0}^{\pi / 2} 50 d \theta=\frac{25}{2} \\
& a_{n}=\frac{1}{\pi} \int_{0}^{\pi / 2} 50 \cos (n \theta) d \theta=\frac{50 \sin (n \pi / 2)}{n \pi} \\
& b_{n}=\frac{1}{\pi} \int_{0}^{\pi / 2} 50 \sin (n \theta) d \theta=\frac{50(1-\cos (n \pi / 2))}{n \pi}
\end{aligned}
$$

so that
$u(r, \theta)=\frac{25}{2}+\frac{50}{\pi} \sum_{n=1}^{\infty} r^{n}\left(\frac{\sin (n \pi / 2)}{n} \cos (n \theta)+\frac{(1-\cos (n \pi / 2))}{n} \sin (n \theta)\right)$.

Remarks:

- One can frequently use identities like (valid for $|r|<1$)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{r^{n} \cos (n \theta)}{n}=-\frac{1}{2} \ln \left(1-2 r \cos \theta+r^{2}\right) \\
& \sum_{n=1}^{\infty} \frac{r^{n} \sin (n \theta)}{n}=\arctan \left(\frac{r \sin \theta}{1-r \cos \theta}\right)
\end{aligned}
$$

to convert series solutions in polar coordinates to cartesian expressions.

- Using the second identity, one can show that the solution in the preceding example is

$$
u(x, y)=\frac{25}{2}+\frac{50}{\pi}\left(\arctan \left(\frac{y}{1-x}\right)+\arctan \left(\frac{x}{1-y}\right)\right) .
$$

