The Method of Frobenius

R. C. Daileda

Trinity University

Partial Differential Equations

Lecture 16

Motivating example

Failure of the power series method

Consider the ODE $2 x y^{\prime \prime}+y^{\prime}+y=0$. In standard form this is

$$
y^{\prime \prime}+\frac{1}{2 x} y^{\prime}+\frac{1}{2 x} y=0 \Rightarrow p(x)=q(x)=\frac{1}{2 x}, g(x)=0 .
$$

In exercise A.4.25 you showed that $1 / x$ is analytic at any $a>0$, with radius $R=a$. Hence:

$$
\begin{aligned}
& \text { Every solution of } 2 x y^{\prime \prime}+y^{\prime}+y=0 \text { is analytic at } a>0 \\
& \text { with radius } R \geq a \text { (i.e. given by a PS for } 0<x<2 a \text {). }
\end{aligned}
$$

However, since p, q, g are continuous for $x>0$, general theory guarantees that:

Every solution of $2 x y^{\prime \prime}+y^{\prime}+y=0$ is defined for all $x>0$.
Question: Can we find series solutions defined for all $x>0$?

Even though $p(x)=q(x)=1 / 2 x$ is not analytic at $a=0$, we nonetheless assume

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \text { (with positive radius) }
$$

and see what happens. Plugging into the ODE and collecting common powers of x leads to

$$
a_{n+1}=\frac{-a_{n}}{(n+1)(2 n+1)} \quad \text { for } \quad n \geq 1
$$

and then choosing $a_{0}=1$ yields the first solution

$$
a_{n}=\frac{(-1)^{n} 2^{n}}{(2 n)!} \Rightarrow y_{1}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{(2 n)!} x^{n}=\cos (\sqrt{2 x}) .
$$

But choosing $a_{0}=0$ gives $a_{n}=0$ for all $n \geq 0$, so that $y_{2} \equiv 0$.

What now?

To find a second independent solution, we instead assume

$$
y=x^{r} \underbrace{\sum_{n=0}^{\infty} a_{n} x^{n}}_{\text {PS with } R>0}=\sum_{n=0}^{\infty} a_{n} x^{n+r} \quad\left(a_{0} \neq 0\right)
$$

for some $r \in \mathbb{R}$ to be determined. Since
$y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}, \quad y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}$,
plugging into the ODE gives
$2 x \sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty} a_{n} x^{n+r}=0$.

Distributing the $2 x$ and setting $m=n-1$ in the first two series yields

$$
\begin{aligned}
\sum_{m=-1}^{\infty} 2(m+r+1)(m+r) a_{m+1} x^{m+r} & +\sum_{m=-1}^{\infty}(m+1+r) a_{m+1} x^{m+r} \\
& +\sum_{n=0}^{\infty} a_{n} x^{n+r}=0
\end{aligned}
$$

or, replacing m with n

$$
\begin{aligned}
& \underbrace{(2 r(r-1)+r) a_{0} x^{r-1}}_{n=-1} \\
& +\sum_{n=0}^{\infty}\left((n+r+1)(2(n+r)+1) a_{n+1}+a_{n}\right) x^{n+r}=0 .
\end{aligned}
$$

This requires the coefficients on each power of x to equal zero.

That is

$$
r(2 r-1) a_{0}=0 \underset{a_{0} \neq 0}{\Rightarrow} r(2 r-1)=0 \Rightarrow r=0, \frac{1}{2},
$$

and $(n+r+1)(2 n+2 r+1) a_{n+1}+a_{n}=0$, or

$$
a_{n+1}=\frac{-a_{n}}{(n+r+1)(2 n+2 r+1)} \text { for } n \geq 0
$$

Each value of r gives a different recurrence:

$$
\begin{aligned}
& r=0 \Rightarrow a_{n+1}=\frac{-a_{n}}{(n+1)(2 n+1)}, \\
& r=\frac{1}{2} \Rightarrow a_{n+1}=\frac{-a_{n}}{(n+3 / 2)(2 n+2)}=\frac{-a_{n}}{(2 n+3)(n+1)}
\end{aligned}
$$

Notice that the first is the original recurrence!

Taking $a_{0}=1$ in the second we eventually find that

$$
a_{n}=\frac{(-1)^{n} 2^{n}}{(2 n+1)!} \Rightarrow y_{2}=x^{1 / 2} \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{(2 n+1)!} x^{n}=\frac{1}{\sqrt{2}} \sin (\sqrt{2 x}) .
$$

This gives the second (linearly independent) solution to the ODE, and we have the general solution

$$
y=c_{1} y_{1}+c_{2} y_{2}=c_{1} \cos (\sqrt{2 x})+c_{2}^{\prime} \sin (\sqrt{2 x}) \quad(x>0) .
$$

Remarks:

- The fact that both series yielded familiar functions is simply a coincidence, and should not be expected in general.
- One could also have obtained y_{2} from y_{1} (or vice-verse) using a technique called reduction of order.

Method of Frobenius - First Solution

When will the preceding technique work at an "extraordinary" point? Here's a partial answer:

Theorem

Suppose that at least one of $p(x)$ or $q(x)$ is not analytic at $x=0$, but that both of $x p(x)$ and $x^{2} q(x)$ are. If

$$
\lim _{x \rightarrow 0} x p(x)=p_{0} \quad \text { and } \quad \lim _{x \rightarrow 0} x^{2} q(x)=q_{0}
$$

then there is a solution to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0(x>0)$ of the form

$$
y=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n} \quad\left(a_{0} \neq 0\right)
$$

where r is a root of the indicial equation $r^{2}+\left(p_{0}-1\right) r+q_{0}=0$.

Remarks

- Under the hypotheses of the theorem, we say that $a=0$ is a regular singular point of the ODE.
- Suppose the roots of the indicial equation are r_{1} and r_{2}.
- If $r_{1}-r_{2} \notin \mathbb{Z}$, then both $r=r_{1}$ and $r=r_{2}$ yield (linearly independent) solutions.
- If $r_{1}-r_{2} \in \mathbb{Z}$, then only $r=\max \left\{r_{1}, r_{2}\right\}$ is guaranteed to work. The other may or may not.
- If the PS for $x p(x)$ and $x^{2} q(x)$ both converge for $|x|<R$, so does the PS factor of y.
- We can talk about regular singularities at any $x=a$ by instead considering $(x-a) p(x),(x-a)^{2} q(x), \lim _{x \rightarrow a^{\prime}}$, and writing the solution in powers of $(x-a)$.

Example

Find the general solution to $x^{2} y^{\prime \prime}+x y^{\prime}+(x-2) y=0$.
In standard form this ODE has

$$
p(x)=\frac{1}{x} \quad \text { and } \quad q(x)=\frac{x-2}{x^{2}}
$$

neither of which is analytic at $x=0$. However, both

$$
x p(x)=1 \quad \text { and } \quad x^{2} q(x)=x-2
$$

are analytic at $x=0$, so we have a regular singularity with

$$
p_{0}=\lim _{x \rightarrow 0} x p(x)=1 \text { and } q_{0}=\lim _{x \rightarrow 0} x^{2} q(x)=-2
$$

The indicial equation is

$$
r^{2}+(1-1) r-2=0 \Rightarrow r= \pm \sqrt{2}
$$

Applying the method of Frobenius, we set

$$
y=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n+r} \quad\left(a_{0} \neq 0\right)
$$

and substitute into the ODE, obtaining

$$
\left(r^{2}-2\right) a_{0} x^{r}+\sum_{n=1}^{\infty}\left(\left((n+r)^{2}-2\right) a_{n}+a_{n-1}\right) x^{n+r}=0 .
$$

Hence we must have $r^{2}-2=0$ (which we already knew) and

$$
a_{n}=\frac{-a_{n-1}}{(n+r)^{2}-2}=\frac{-a_{n-1}}{n(n+2 r)} \text { for } n \geq 1
$$

Taking $a_{0}=1$ one readily sees that

$$
a_{n}=\frac{(-1)^{n}}{n!(1+2 r)(2+2 r)(3+2 r) \cdots(n+2 r)}
$$

Since the difference of the roots is $\sqrt{2}-(-\sqrt{2})=2 \sqrt{2} \notin \mathbb{Z}$, the two r-values give independent solutions:

$$
\begin{aligned}
& y_{1}=x^{\sqrt{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!(1+2 \sqrt{2})(2+2 \sqrt{2})(3+2 \sqrt{2}) \cdots(n+2 \sqrt{2})} \\
& y_{2}=x^{-\sqrt{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!(1-2 \sqrt{2})(2-2 \sqrt{2})(3-2 \sqrt{2}) \cdots(n-2 \sqrt{2})}
\end{aligned}
$$

and the general solution (for $x>0$) is

$$
y=c_{1} y_{1}+c_{2} y_{2} .
$$

Remark: Because $x p(x)=1$ and $x^{2} q(x)=x-2$ both have infinite radius of convergence, so do both series above.

Method of Frobenius - Second Solution

What do we do if the indicial roots differ by an integer?

Theorem

Suppose that $x=0$ is a regular singular point of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, and that the roots of the indicial equation are r_{1} and r_{2}, with $r_{1}-r_{2} \in \mathbb{N}_{0}$.

- If $r_{1}=r_{2}=r$, the second solution has the form

$$
y_{2}=y_{1} \ln x+x^{r} \sum_{n=1}^{\infty} b_{n} x^{n} .
$$

- If $r_{1}>r_{2}$ (so that y_{1} uses r_{1}), the second solution has the form

$$
y_{2}=k y_{1} \ln x+x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n} \quad\left(b_{0} \neq 0\right)
$$

Example

Find the general solution to $x y^{\prime \prime}+(1-x) y^{\prime}+2 y=0, x>0$.
In standard form we have

$$
p(x)=\frac{1-x}{x} \quad \text { and } \quad q(x)=\frac{2}{x}
$$

which are non-analytic at $x=0$, and

$$
x p(x)=1-x \quad \text { and } \quad x^{2} q(x)=2 x
$$

which are. This makes $x=0$ a regular singularity with

$$
p_{0}=\lim _{x \rightarrow 0} 1-x=1 \text { and } \lim _{x \rightarrow 0} 2 x=0,
$$

and indicial equation

$$
r^{2}+(1-1) r+0=0 \Rightarrow r=0
$$

Since $r=0$ is a double root, we are guaranteed only one solution of the form

$$
y=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Plugging this into the ODE and simplifying leads to the recursion

$$
a_{n+1}=\frac{(n-2) a_{n}}{(n+1)^{2}} \text { for } n \geq 0
$$

Taking $a_{0}=1$ we find that

$$
a_{1}=\frac{-2 a_{0}}{1^{2}}=-2, \quad a_{2}=\frac{-a_{1}}{2^{2}}=\frac{1}{2}, \quad a_{3}=\frac{0 \cdot a_{2}}{3^{2}}=0,
$$

and hence $a_{4}=a_{5}=a_{6}=\cdots=0$ as well. So our first solution is

$$
y_{1}=1-2 x+\frac{x^{2}}{2}
$$

According to the theorem, a second independent solution has the form

$$
y_{2}=y_{1} \ln x+\underbrace{x^{0} \sum_{n=1}^{\infty} b_{n} x^{n}}_{w},
$$

and we need to solve for the b_{n}. The product rule gives us

$$
\begin{aligned}
& y_{2}^{\prime}=y_{1}^{\prime} \ln x+\frac{y_{1}}{x}+w^{\prime}, \\
& y_{2}^{\prime \prime}=y_{1}^{\prime \prime} \ln x+\frac{2 y_{1}^{\prime}}{x}-\frac{y_{1}}{x^{2}}+w^{\prime \prime},
\end{aligned}
$$

and plugging these into $x y_{2}^{\prime \prime}+(1-x) y_{2}^{\prime}+2 y_{2}=0$ we obtain

$$
\begin{gathered}
\underbrace{\left(x y_{1}^{\prime \prime}+(1-x) y_{1}^{\prime}+2 y_{1}\right)}_{=0} \ln x-y_{1}+2 y_{1}^{\prime}+x w^{\prime \prime}+(1-x) w^{\prime}+2 w=0, \\
x w^{\prime \prime}+(1-x) w^{\prime}+2 w=-2 y_{1}^{\prime}+y_{1} .
\end{gathered}
$$

We now plug $y_{1}=1-2 x+x^{2} / 2$ and $w=\sum_{n=1}^{\infty} b_{n} x^{n}$ into this equation to obtain a recurrence for the b_{n} :

$$
b_{1}+\sum_{n=1}^{\infty}\left((n+1)^{2} b_{n+1}-(n-2) b_{n}\right) x^{n}=5-4 x+\frac{x^{2}}{2} .
$$

Hence

$$
b_{1}=5, \quad 4 b_{2}+b_{1}=-4, \quad 9 b_{3}=\frac{1}{2}
$$

and

$$
b_{n+1}=\frac{(n-2) b_{n}}{(n+1)^{2}} \Rightarrow b_{n}=\frac{36 b_{3}}{n(n-1)(n-2) n!} \quad \text { for } n \geq 3
$$

Thus, since $b_{3}=1 / 18$,

$$
y_{2}=\underbrace{\left(1-2 x+\frac{x^{2}}{2}\right)}_{y_{1}} \ln x+\underbrace{5 x-\frac{9}{4} x^{2}+2 \sum_{n=3}^{\infty} \frac{x^{n}}{n(n-1)(n-2) n!}}_{w} .
$$

Finally, we have that the general solution is given by

$$
y=c_{1} y_{1}+c_{2} y_{2} .
$$

Remarks. Regarding the case $r_{1}-r_{2} \in \mathbb{N}_{0}$:

- When y_{1} has infinitely many nonzero coefficients, the general recursion for b_{n} will be more complicated.
- If a closed form expression for the coefficients of y_{1} isn't available, the recursion relations for the a_{n} and b_{n} still allow us to compute as many terms as we need.
- Similar computations and comments hold when $r_{1}-r_{2} \in \mathbb{N}$, except that one must also solve for k.
- Because of the $\ln x$ factor, one can frequently conclude that $\left|y_{2}\right| \rightarrow \infty$ as $x \rightarrow 0^{+}$, without explicitly computing the b_{n}. This will suffice for our applications.

