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Motivating example
Failure of the power series method

Consider the ODE 2xy ′′ + y ′ + y = 0. In standard form this is

y ′′ +
1

2x
y ′ +

1

2x
y = 0 ⇒ p(x) = q(x) =

1

2x
, g(x) = 0.

In exercise A.4.25 you showed that 1/x is analytic at any a > 0,
with radius R = a. Hence:

Every solution of 2xy ′′+ y ′+ y = 0 is analytic at a > 0
with radius R ≥ a (i.e. given by a PS for 0 < x < 2a).

However, since p, q, g are continuous for x > 0, general theory
guarantees that:

Every solution of 2xy ′′ + y ′ + y = 0 is defined for all x > 0.

Question: Can we find series solutions defined for all x > 0?
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Even though p(x) = q(x) = 1/2x is not analytic at a = 0, we
nonetheless assume

y =
∞∑
n=0

anx
n (with positive radius)

and see what happens. Plugging into the ODE and collecting
common powers of x leads to

an+1 =
−an

(n + 1)(2n + 1)
for n ≥ 1,

and then choosing a0 = 1 yields the first solution

an =
(−1)n2n

(2n)!
⇒ y1 =

∞∑
n=0

(−1)n2n

(2n)!
xn = cos

(√
2x
)
.

But choosing a0 = 0 gives an = 0 for all n ≥ 0, so that y2 ≡ 0.
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Introduction The “näıve” Frobenius method The general Frobenius method

What now?

To find a second independent solution, we instead assume

y = x r
∞∑
n=0

anx
n

︸ ︷︷ ︸
PS with R>0

=
∞∑
n=0

anx
n+r (a0 6= 0)

for some r ∈ R to be determined. Since

y ′ =
∞∑
n=0

(n + r)anx
n+r−1, y ′′ =

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2,

plugging into the ODE gives

2x
∞∑
n=0

(n+r)(n+r−1)anx
n+r−2+

∞∑
n=0

(n+r)anx
n+r−1+

∞∑
n=0

anx
n+r = 0.
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Distributing the 2x and setting m = n − 1 in the first two series
yields

∞∑
m=−1

2(m + r + 1)(m + r)am+1x
m+r +

∞∑
m=−1

(m + 1 + r)am+1x
m+r

+
∞∑
n=0

anx
n+r = 0

or, replacing m with n

(2r(r − 1) + r)a0x
r−1︸ ︷︷ ︸

n=−1

+
∞∑
n=0

((n + r + 1) (2(n + r) + 1) an+1 + an) xn+r = 0.

This requires the coefficients on each power of x to equal zero.
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That is

r(2r − 1)a0 = 0 ⇒
a0 6=0

r(2r − 1) = 0 ⇒ r = 0,
1

2
,

and (n + r + 1)(2n + 2r + 1)an+1 + an = 0, or

an+1 =
−an

(n + r + 1)(2n + 2r + 1)
for n ≥ 0.

Each value of r gives a different recurrence:

r = 0 ⇒ an+1 =
−an

(n + 1)(2n + 1)
,

r =
1

2
⇒ an+1 =

−an
(n + 3/2)(2n + 2)

=
−an

(2n + 3)(n + 1)
.

Notice that the first is the original recurrence!
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Taking a0 = 1 in the second we eventually find that

an =
(−1)n2n

(2n + 1)!
⇒ y2 = x1/2

∞∑
n=0

(−1)n2n

(2n + 1)!
xn =

1√
2

sin
(√

2x
)
.

This gives the second (linearly independent) solution to the ODE,
and we have the general solution

y = c1y1 + c2y2 = c1 cos
(√

2x
)

+ c ′2 sin
(√

2x
)

(x > 0).

Remarks:

The fact that both series yielded familiar functions is simply a
coincidence, and should not be expected in general.

One could also have obtained y2 from y1 (or vice-verse) using
a technique called reduction of order.
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Method of Frobenius - First Solution

When will the preceding technique work at an “extraordinary”
point? Here’s a partial answer:

Theorem

Suppose that at least one of p(x) or q(x) is not analytic at x = 0,
but that both of xp(x) and x2q(x) are. If

lim
x→0

xp(x) = p0 and lim
x→0

x2q(x) = q0,

then there is a solution to y ′′ + p(x)y ′ + q(x)y = 0 (x > 0) of the
form

y = x r
∞∑
n=0

anx
n (a0 6= 0),

where r is a root of the indicial equation r2 + (p0 − 1)r + q0 = 0.
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Remarks

Under the hypotheses of the theorem, we say that a = 0 is a
regular singular point of the ODE.

Suppose the roots of the indicial equation are r1 and r2.

If r1 − r2 6∈ Z, then both r = r1 and r = r2 yield (linearly
independent) solutions.

If r1 − r2 ∈ Z, then only r = max{r1, r2} is guaranteed to work.
The other may or may not.

If the PS for xp(x) and x2q(x) both converge for |x | < R, so
does the PS factor of y .

We can talk about regular singularities at any x = a by
instead considering (x − a)p(x), (x − a)2q(x), lim

x→a
, and

writing the solution in powers of (x − a) .
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Example

Find the general solution to x2y ′′ + xy ′ + (x − 2)y = 0.

In standard form this ODE has

p(x) =
1

x
and q(x) =

x − 2

x2
,

neither of which is analytic at x = 0. However, both

xp(x) = 1 and x2q(x) = x − 2

are analytic at x = 0, so we have a regular singularity with

p0 = lim
x→0

xp(x) = 1 and q0 = lim
x→0

x2q(x) = − 2.

The indicial equation is

r2 + (1− 1)r − 2 = 0 ⇒ r = ±
√

2.
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Applying the method of Frobenius, we set

y = x r
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r (a0 6= 0)

and substitute into the ODE, obtaining

(r2 − 2)a0x
r +

∞∑
n=1

((
(n + r)2 − 2

)
an + an−1

)
xn+r = 0.

Hence we must have r2 − 2 = 0 (which we already knew) and

an =
−an−1

(n + r)2 − 2
=
−an−1

n(n + 2r)
for n ≥ 1.

Taking a0 = 1 one readily sees that

an =
(−1)n

n!(1 + 2r)(2 + 2r)(3 + 2r) · · · (n + 2r)
.
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Since the difference of the roots is
√

2− (−
√

2) = 2
√

2 6∈ Z, the
two r -values give independent solutions:

y1 = x
√
2
∞∑
n=0

(−1)nxn

n!(1 + 2
√

2)(2 + 2
√

2)(3 + 2
√

2) · · · (n + 2
√

2)
,

y2 = x−
√
2
∞∑
n=0

(−1)nxn

n!(1− 2
√

2)(2− 2
√

2)(3− 2
√

2) · · · (n − 2
√

2)
,

and the general solution (for x > 0) is

y = c1y1 + c2y2.

Remark: Because xp(x) = 1 and x2q(x) = x − 2 both have
infinite radius of convergence, so do both series above.
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Method of Frobenius - Second Solution

What do we do if the indicial roots differ by an integer?

Theorem

Suppose that x = 0 is a regular singular point of
y ′′ + p(x)y ′ + q(x)y = 0, and that the roots of the indicial
equation are r1 and r2, with r1 − r2 ∈ N0.

If r1 = r2 = r , the second solution has the form

y2 = y1 ln x + x r
∞∑
n=1

bnx
n.

If r1 > r2 (so that y1 uses r1), the second solution has the form

y2 = ky1 ln x + x r2
∞∑
n=0

bnx
n (b0 6= 0).
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Example

Find the general solution to xy ′′ + (1− x)y ′ + 2y = 0, x > 0.

In standard form we have

p(x) =
1− x

x
and q(x) =

2

x
,

which are non-analytic at x = 0, and

xp(x) = 1− x and x2q(x) = 2x ,

which are. This makes x = 0 a regular singularity with

p0 = lim
x→0

1− x = 1 and lim
x→0

2x = 0,

and indicial equation

r2 + (1− 1)r + 0 = 0 ⇒ r = 0.
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Since r = 0 is a double root, we are guaranteed only one solution
of the form

y = x r
∞∑
n=0

anx
n =

∞∑
n=0

anx
n.

Plugging this into the ODE and simplifying leads to the recursion

an+1 =
(n − 2)an
(n + 1)2

for n ≥ 0.

Taking a0 = 1 we find that

a1 =
−2a0

12
= − 2, a2 =

−a1
22

=
1

2
, a3 =

0 · a2
32

= 0,

and hence a4 = a5 = a6 = · · · = 0 as well. So our first solution is

y1 = 1− 2x +
x2

2
.
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According to the theorem, a second independent solution has the
form

y2 = y1 ln x + x0
∞∑
n=1

bnx
n

︸ ︷︷ ︸
w

,

and we need to solve for the bn. The product rule gives us

y ′2 = y ′1 ln x +
y1
x

+ w ′,

y ′′2 = y ′′1 ln x +
2y ′1
x
− y1

x2
+ w ′′,

and plugging these into xy ′′2 + (1− x)y ′2 + 2y2 = 0 we obtain(
xy ′′1 + (1− x)y ′1 + 2y1

)︸ ︷︷ ︸
=0

ln x − y1 + 2y ′1 + xw ′′ + (1− x)w ′ + 2w = 0,

xw ′′ + (1− x)w ′ + 2w = −2y ′1 + y1.
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We now plug y1 = 1− 2x + x2/2 and w =
∑∞

n=1 bnx
n into this

equation to obtain a recurrence for the bn:

b1 +
∞∑
n=1

(
(n + 1)2bn+1 − (n − 2)bn

)
xn = 5− 4x +

x2

2
.

Hence

b1 = 5, 4b2 + b1 = −4, 9b3 =
1

2
,

and

bn+1 =
(n − 2)bn
(n + 1)2

⇒ bn =
36b3

n(n − 1)(n − 2)n!
for n ≥ 3.

Thus, since b3 = 1/18,

y2 =

(
1− 2x +

x2

2

)
︸ ︷︷ ︸

y1

ln x + 5x − 9

4
x2 + 2

∞∑
n=3

xn

n(n − 1)(n − 2)n!︸ ︷︷ ︸
w

.
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Finally, we have that the general solution is given by

y = c1y1 + c2y2.

Remarks. Regarding the case r1 − r2 ∈ N0:

When y1 has infinitely many nonzero coefficients, the general
recursion for bn will be more complicated.

If a closed form expression for the coefficients of y1 isn’t
available, the recursion relations for the an and bn still allow
us to compute as many terms as we need.

Similar computations and comments hold when r1 − r2 ∈ N,
except that one must also solve for k .

Because of the ln x factor, one can frequently conclude that
|y2| → ∞ as x → 0+, without explicitly computing the bn.
This will suffice for our applications.
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