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Bessel’s equation

Bessel's equation

Given p > 0, the ordinary differential equation
2y 4+ xy + (2 —pPy =0, x>0

is known as Bessel’s equation of order p. In standard form this has

1
p(x) = X’ xp(x) =1,
=
X2 —p? x2q(x) = x> — p?
9(x) = — '

so that x = 0 is a regular singularity with indicial equation

P+ -1r—p*=0 = r=+p.
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Frobenius’ method

The method of Frobenius

Consequently, for r = p at least, we know there is a solution of the
form

o o
y =x" Z anx" = Z anx"™t" (ag #0),
n=0 n=0

which will converge for all x > 0.

Substituting this into Bessel's equation and collecting terms with
common powers of x gives

ao(r2 _ pZ)Xr +a ((r+ 1)2 _ p2) Xr+1+
(am ((r + m)? — p2) + am—z) x"tm = 0.

m=2
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Frobenius’ method

Setting the coefficients equal to zero gives the equations

(r’ = p)=0 = r=d+p,

ao

a((r+1?-p°)=0 = a1 =0,

—dm-2 —dm-2
= = > 2).
am (r+m)2=p> m(m+2r) (m =2)
These imply that a; = a3 = a5 = - -+ = axk+1 = 0 and, taking

r=mp,
S (—1)*ap
2T kK1t p)(2+p) - (k+p)

This gives the first Frobenius solution

y; = xP i (-1)"20 x2k
= 22KKkI(1 +p)(2+ p) -+ (k + p)
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Interlude

The Gamma function

In this case, the standard choice for ag involves the Gamma

function -
/ e 't ldt (s> 0).
0

One can use integration by parts to show that
M(s+1)=sTl(s).
Applying this repeatedly, we find that for k € N
Ms+k)=(s+k—-1)I(s+k—-1)
=(s+k—-1)(s+k—-2)(s+k—2)
=(s+k—1)(s+k—2)(s+k—3)(s+k—3)

=(s+k—-1)(s+k—2)(s+k—3)---sT(s).



This has two nice consequences.

@ One can show I'(1) = [;“ e " dt =1, so setting s = 1 above:
Mk+1)=k(k—1)(k—2)---1-T(1) = k!

This is why I'(s) is called the generalized factorial.

@ Setting s = p+ 1 above:
Mp+1+k)=(p+k)(p+k—=1)-(p+1I(p+1)

or
1 ~ T(p+1)

(L+p)2+p)-(k+p) T(k+p+1)
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Bessel functions

Bessel functions of the first kind

Returning to Bessel's equation, we find that the first Frobenius
solution can be written

= (=1)ka0 2k
_ P
n==x kzzzo22"k!(1+P)(2—|—p)'~(k+p)X

, ad (—1)k X\ 2k+p
=20 Y ey ()

Taking ag = yields the Bessel function of the first kind

1
2°PT(p+1)
of order p:
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Bessel functions

Graphs of Bessel functions of the first kind

osf /\

In Maple, the functions J,(x) can be invoked by the command

BesselJ(p,x)
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Bessel functions

Properties of Bessel functions of the first kind

@ Jo(0) =1 and J,(0) =0 for p > 0.

The values of J, always lie between 1 and —1.

Jp has infinitely many positive zeros, which we denote by

O<ap1<ap2<ap3<~-

Jp is oscillatory and tends to zero as x — co. More precisely,

n"_{*;o lapn — atp g1 =7 .
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Bessel functions

@ For 0 < p < 1, the graph of J, has a vertical tangent line at
x = 0.

@ For 1 < p, the graph of J, has a horizontal tangent line at
x = 0, and the graph is initially “flat.”

@ For some values of p, the Bessel functions of the first kind can
be expressed in terms of familiar functions, e.g.

2 .
Jio(x) = \/Esm X,
2
J5/2(x) = — (()(32 - 1) sinx — icosx) :
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Bessel functions

Remarks

@ Frobenius’ method yields a second linearly independent
solution y» of Bessel's equation.

@ Although the exact form of y» depends on the value of p, it is
not hard to argue that in any case lim |ys| = co.
x—0t

e Since lim J,(x) is finite, it follows that any linearly
x—0+

independent solution Y,(x) must also satisfy

lim [ Y,(x)] = .

@ The standard normalization of Y}, is called the Bessel function
of the second kind. We won't explicitly need it.
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Bessel functions

Differentiation identities

Using the series definition of J,(x), one can show that:

d
— (xPJp(x)) = xPJp-1(x),
ox (1)
o (xPIp(x)) = —x"Pdpy1(x).
The product rule and cancellation lead to
) () + pIp(x) = xp-1(x).
xJp(x) = pdp(x) = —=xIp11(x).
Addition and subtraction of these identities then yield
Jp-1(x) = Jp1(x) = 2J5(x),

Jp1() + Jp1 (9 = P ().
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Bessel functions

Integration identities

Integration of the differentiation identities (1) gives
/XPHJP(X) dx = xPT U, 1 (x) + C

/x_pHJp(x) dx = —x"PJ, 1(x) + C.

o Exercises 4.2.12 and 4.3.9 give similar identities.

@ Identities such as these can be used to evaluate certain
integrals of the form

a
/ f(r)dm(Amnr)rdr,
0
which will occur frequently in later work.
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Bessel functions

Evaluate

/ xPT2 J,(x) dx.

We integrate by parts, first taking

u=x* dv = xPT1J,(x) dx

du = 4x3 dx v=xPT 1 (x),

which gives

/xp+5Jp(x) dx = xPT Jp11(x) — 4/xp+4Jp+1(x) dx.
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Bessel functions

Now integrate by parts again with

u=x° dv = xP2 ), 1(x) dx

du = 2x dx v =xPT2J,15(x),

to get
/Xp+5Jp(X) dx = xPT2 Jpi1(x) — 4/xp+4Jp+1(x) dx

= xPT5 ), 1(x) — 4 <Xp+4Jp+2(X) - 2/Xp+3Jp+2(X) dX>

= xPTUp1(x) — 4xPTHp10(x) + 8xPT2p 5(x) + C.
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Circular membranes

Return of the vibrating circular membrane

Recall that the vibrating circular membrane problem

u=0
Loy O
U = C2AU = C2 (Urr + ;ur + r2u99> ) Ug= CZAU

O<r<a 0<O<2m t>0, =
~a
u(a,f,t)=0, 0<@<2m t>0, k

led to the separated ODE boundary value problem
PR+ rR' + (\2r* — ) R =0, R(0+) finite, R(a)=0,
" + 20 =0, © 2r-periodic,
T4+ 2N°T =0,

and that the solutions to the © problem are

©(0) = ©m(0) = Acos(mé) + Bsin(m#), = m e Np.
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Circular membranes

In the homework you showed that A = 0 implies R = 0, so we are
faced with solving the parametric Bessel equation

PR+ R +(M°rP —m?)R=0 (\>0) (2)
subject to the boundary conditions
R(0+) finite, R(a) = 0.
If we let x = Ar, then the chain rule implies

R _ R _
_dr_dxc_lr_ _
R _ dR’ ~dR  dRdx

AR,
”
AR AR S L) 3
dr dr dx dr A
Hence (2) becomes
x*R 4 xR+ (x> = m*)R =0,

which is Bessel's equation of order m.
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Circular membranes

It follows that

R = C1Jm(X) + C Ym(X) = C1Jm()\r) + & Ym()\r).

Because lim |Y,(&)| = oo, we find that
£—0*

R(0+) finite = =0 = R=cJm,
R(a)=0 = R(a)=c1Jm(ra)=0 =, Jm(Aa) =0

C1

= Na=am, heN

S A=A, =2 peN

Y

Choosing ¢; = 1, we find that

R(r):Rmn(r):Jm(Amnr):Jm (Oén;nr> m e Ng, neN.
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Circular membranes

Normal modes of the vibrating circular membrane

Returning to T (which solves T” + c2A2T = 0), we finally find
T(t) = Tmn(t) = Ccos(cAmnt) + Dsin(cAmnt) .

and arrive at the normal modes for the vibrating circular
membrane: ump(r,0,t) = Rmn(r)Om(0) Tmn(t) =

Im (Amnr) (Acos (m8) + Bsin (m#)) (C cos (cAmnt) + Dsin (cAmnt)),

for m € Ng, n € N.

Note that, up to scaling, rotation and a phase shift in time, these
have the form

u(r,0,t) = Jm(Amnr) cos(ml) cos(cAmnt).
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