
Bessel’s equation Frobenius’ method Γ(s) Bessel functions Circular membranes

An Introduction to Bessel Functions

R. C. Daileda

Trinity University

Partial Differential Equations
Lecture 17

Daileda Bessel Functions



Bessel’s equation Frobenius’ method Γ(s) Bessel functions Circular membranes

Bessel’s equation

Given p ≥ 0, the ordinary differential equation

x2y ′′ + xy ′ + (x2 − p2)y = 0, x > 0

is known as Bessel’s equation of order p. In standard form this has

p(x) =
1

x
,

q(x) =
x2 − p2

x2

 ⇒
xp(x) = 1,

x2q(x) = x2 − p2.

so that x = 0 is a regular singularity with indicial equation

r2 + (1− 1)r − p2 = 0 ⇒ r = ±p.
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The method of Frobenius

Consequently, for r = p at least, we know there is a solution of the
form

y = x r
∞∑
n=0

anx
n =

∞∑
n=0

anx
r+n (a0 6= 0),

which will converge for all x > 0.

Substituting this into Bessel’s equation and collecting terms with
common powers of x gives

a0(r2 − p2)x r + a1

(
(r + 1)2 − p2

)
x r+1+

∞∑
m=2

(
am
(
(r + m)2 − p2

)
+ am−2

)
x r+m = 0.
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Setting the coefficients equal to zero gives the equations

a0(r2 − p2) = 0 ⇒
a0 6=0

r = ±p,

a1

(
(r + 1)2 − p2

)
= 0 ⇒ a1 = 0,

am =
−am−2

(r + m)2 − p2
=
−am−2

m(m + 2r)
(m ≥ 2).

These imply that a1 = a3 = a5 = · · · = a2k+1 = 0 and, taking
r = p,

a2k =
(−1)ka0

22kk!(1 + p)(2 + p) · · · (k + p)
.

This gives the first Frobenius solution

y1 = xp
∞∑
k=0

(−1)ka0

22kk!(1 + p)(2 + p) · · · (k + p)
x2k
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Interlude
The Gamma function

In this case, the standard choice for a0 involves the Gamma
function

Γ(s) =

∫ ∞
0

e−tts−1 dt (s > 0).

One can use integration by parts to show that

Γ(s + 1) = s Γ(s).

Applying this repeatedly, we find that for k ∈ N

Γ(s + k) = (s + k − 1)Γ(s + k − 1)

= (s + k − 1)(s + k − 2)Γ(s + k − 2)

= (s + k − 1)(s + k − 2)(s + k − 3)Γ(s + k − 3)

...

= (s + k − 1)(s + k − 2)(s + k − 3) · · · s Γ(s).

Daileda Bessel Functions



Bessel’s equation Frobenius’ method Γ(s) Bessel functions Circular membranes

This has two nice consequences.

One can show Γ(1) =
∫∞

0 e−t dt = 1, so setting s = 1 above:

Γ(k + 1) = k(k − 1)(k − 2) · · · 1 · Γ(1) = k!

This is why Γ(s) is called the generalized factorial.

Setting s = p + 1 above:

Γ(p + 1 + k) = (p + k)(p + k − 1) · · · (p + 1)Γ(p + 1)

or
1

(1 + p)(2 + p) · · · (k + p)
=

Γ(p + 1)

Γ(k + p + 1)
.
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Bessel functions of the first kind

Returning to Bessel’s equation, we find that the first Frobenius
solution can be written

y1 = xp
∞∑
k=0

(−1)ka0

22kk!(1 + p)(2 + p) · · · (k + p)
x2k

= 2pΓ(p + 1)a0

∞∑
k=0

(−1)k

k!Γ(k + p + 1)

(x
2

)2k+p
.

Taking a0 =
1

2pΓ(p + 1)
yields the Bessel function of the first kind

of order p:

Jp(x) =
∞∑
k=0

(−1)k

k! Γ(k + p + 1)

(x
2

)2k+p
.
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Graphs of Bessel functions of the first kind

In Maple, the functions Jp(x) can be invoked by the command

BesselJ(p,x)
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Properties of Bessel functions of the first kind

J0(0) = 1 and Jp(0) = 0 for p > 0.

The values of Jp always lie between 1 and −1.

Jp has infinitely many positive zeros, which we denote by

0 < αp1 < αp2 < αp3 < · · ·

Jp is oscillatory and tends to zero as x →∞. More precisely,

Jp(x) ∼
√

2

πx
cos
(
x − pπ

2
− π

4

)
.

lim
n→∞

|αpn − αp,n+1| = π .
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For 0 < p < 1, the graph of Jp has a vertical tangent line at
x = 0.

For 1 < p, the graph of Jp has a horizontal tangent line at
x = 0, and the graph is initially “flat.”

For some values of p, the Bessel functions of the first kind can
be expressed in terms of familiar functions, e.g.

J1/2(x) =

√
2

πx
sin x ,

J5/2(x) =

√
2

πx

((
3

x2
− 1

)
sin x − 3

x
cos x

)
.
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Remarks

Frobenius’ method yields a second linearly independent
solution y2 of Bessel’s equation.

Although the exact form of y2 depends on the value of p, it is
not hard to argue that in any case lim

x→0+
|y2| =∞.

Since lim
x→0+

Jp(x) is finite, it follows that any linearly

independent solution Yp(x) must also satisfy

lim
x→0+

|Yp(x)| =∞.

The standard normalization of Yp is called the Bessel function
of the second kind. We won’t explicitly need it.
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Differentiation identities

Using the series definition of Jp(x), one can show that:

d

dx
(xpJp(x)) = xpJp−1(x),

d

dx

(
x−pJp(x)

)
= −x−pJp+1(x).

(1)

The product rule and cancellation lead to

xJ ′p(x) + pJp(x) = xJp−1(x),

xJ ′p(x)− pJp(x) = −xJp+1(x).

Addition and subtraction of these identities then yield

Jp−1(x)− Jp+1(x) = 2J ′p(x),

Jp−1(x) + Jp+1(x) =
2p

x
Jp(x).

Daileda Bessel Functions



Bessel’s equation Frobenius’ method Γ(s) Bessel functions Circular membranes

Integration identities

Integration of the differentiation identities (1) gives∫
xp+1Jp(x) dx = xp+1Jp+1(x) + C∫

x−p+1Jp(x) dx = −x−p+1Jp−1(x) + C .

Exercises 4.2.12 and 4.3.9 give similar identities.

Identities such as these can be used to evaluate certain
integrals of the form∫ a

0
f (r)Jm(λmnr)r dr ,

which will occur frequently in later work.
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Example

Evaluate ∫
xp+5Jp(x) dx .

We integrate by parts, first taking

u = x4 dv = xp+1Jp(x) dx

du = 4x3 dx v = xp+1Jp+1(x),

which gives∫
xp+5Jp(x) dx = xp+5Jp+1(x)− 4

∫
xp+4Jp+1(x) dx .
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Now integrate by parts again with

u = x2 dv = xp+2Jp+1(x) dx

du = 2x dx v = xp+2Jp+2(x),

to get∫
xp+5Jp(x)dx = xp+5Jp+1(x)− 4

∫
xp+4Jp+1(x) dx

= xp+5Jp+1(x)− 4

(
xp+4Jp+2(x)− 2

∫
xp+3Jp+2(x) dx

)
= xp+5Jp+1(x)− 4xp+4Jp+2(x) + 8xp+3Jp+3(x) + C .
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Return of the vibrating circular membrane

Recall that the vibrating circular membrane problem

Δu u  = c
x

y

a

tt
2

u=0

utt = c2∆u = c2

(
urr +

1

r
ur +

1

r2
uθθ

)
,

0 < r < a, 0 < θ < 2π, t > 0,

u(a, θ, t) = 0, 0 ≤ θ ≤ 2π, t > 0,

led to the separated ODE boundary value problem

r2R ′′ + rR ′ +
(
λ2r2 − µ2

)
R = 0, R(0+) finite, R(a) = 0,

Θ′′ + µ2Θ = 0, Θ 2π-periodic,

T ′′ + c2λ2T = 0,

and that the solutions to the Θ problem are

Θ(θ) = Θm(θ) = A cos (mθ) + B sin (mθ) , µ = m ∈ N0.
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In the homework you showed that λ = 0 implies R ≡ 0, so we are
faced with solving the parametric Bessel equation

r2R ′′ + rR ′ + (λ2r2 −m2)R = 0 (λ > 0) (2)

subject to the boundary conditions

R(0+) finite, R(a) = 0.

If we let x = λr , then the chain rule implies

R ′ =
dR

dr
=

dR

dx

dx

dr
= λṘ,

R ′′ =
dR ′

dr
= λ

dṘ

dr
= λ

dṘ

dx

dx

dr
= λ2R̈.

Hence (2) becomes

x2R̈ + xṘ + (x2 −m2)R = 0,

which is Bessel’s equation of order m.
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It follows that

R = c1Jm(x) + c2Ym(x) = c1Jm(λr) + c2Ym(λr).

Because lim
ξ→0+

|Ym(ξ)| =∞, we find that

R(0+) finite ⇒ c2 = 0 ⇒ R = c1Jm,

R(a) = 0 ⇒ R(a) = c1Jm(λa) = 0 ⇒
c1 6=0

Jm(λa) = 0

⇒ λa = αmn, n ∈ N

⇒ λ = λmn =
αmn

a
, n ∈ N

Choosing c1 = 1, we find that

R(r) = Rmn(r) = Jm(λmnr) = Jm
(αmnr

a

)
m ∈ N0, n ∈ N.
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Normal modes of the vibrating circular membrane

Returning to T (which solves T ′′ + c2λ2T = 0), we finally find

T (t) = Tmn(t) = C cos (cλmnt) + D sin (cλmnt) .

and arrive at the normal modes for the vibrating circular
membrane: umn(r , θ, t) = Rmn(r)Θm(θ)Tmn(t) =

Jm (λmnr) (A cos (mθ) + B sin (mθ)) (C cos (cλmnt) + D sin (cλmnt)) ,

for m ∈ N0, n ∈ N.

Note that, up to scaling, rotation and a phase shift in time, these
have the form

u(r , θ, t) = Jm(λmnr) cos(mθ) cos(cλmnt).
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