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Normal modes of the vibrating circular membrane

Recall that for m € Ny, n € N these have the form
JIm (Amnr) (Acos (mB) + Bsin (mf)) (C cos (cAmnt) + Dsin(cAmnt)),
where A\ = amn/a, @ > 0 is the radius of the membrane, and
am1 < Omp < am3z < -+
are the positive zeros of J,(x). For convenience we set

Umn(r, 0,t) = Im(Amnr) (amn cos(mB) + by sin(mf)) cos(cAmnt),
ur o (r,0,t) = Jm(Amnr) (a5, cos(mb) + by, sin(m)) sin(cAmnt),

and use superposition to construct the general solution

u(r,0,t) ZZumnr0t+ZZmnr9t

m=0 n=1 m=0 n=1
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Superposition and orthogonality

Imposing the initial conditions

In order to completely determine the shape of the membrane at
any time we must specify the initial conditions

u(r,0,0) =f(r,0), 0<r<a, 0<80 <27 (shape),
ue(r,0,0) = g(r,0), 0<r<a, 0<6<2r (velocity).

Setting t = 0 in the general solution, we find that this requires

(r,0) = Z ZJ Amnt) (@mn cos(mé) + bmp sin(m0))

m=0 n=1

(r,0) = Z Z cAmnIm(Amnr) (8}, cos(mb) + b}, sin(m0))

m=0 n=1

which are called Fourier-Bessel expansions.
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Superposition and orthogonality

Othogonality of Bessel functions

One can show that the functions Rpy,(r) = Jm (Amnr) are
orthogonal relative to the weighted inner product

(f.e) = | F(e(r)rar
That is,
(Rmns Rmk) = / Im(Amnr) Im(Amkr) rdr=0 if n# k.
0

In addition, it can also be shown that

a a2
<Rm,,,Rm,,>:/0 J,%,(Amnr)rerEJ,%,H(amn).
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Superposition and orthogonality

Using the orthogonality relations for Bessel and trigonometric
functions, one obtains:

Theorem

The functions

Gmn(r,0) = Im(Amnr) cos(mb),
Umn(r,0) = Im(Amnr) sin(mb),

(m € No, n € N) form a (complete) orthogonal set of functions
relative to the inner product

21 ra
<f,g>=/0 /0 f(r,0)g(r,0)rdrdo.

That is, <¢mn>¢jk> = <¢mna¢jk> =0 for (m, n) # (_/, k) and
(mn, Yjx) = 0 for all (m, n) and (j, k).
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Coefficient formulae

Since our initial membrane shape condition is

= Z Z (amn®mn(r,0) + bmntmn(r,0)),

m=0 n=1

the usual orthogonality argument gives

27 ra
N (f, dmn) _/ / f(r,0)Im(Amnr) cos(m@) r dr d6
e <¢mna¢mn> N 27

/ J2(Amnr) cos?(m) r dr do

2
_ <f7wmn> / / r 0 mnr) Sm(me) rdrdf
me 27 ,
<¢mna'¢}mn> / / mnr Sln2(m9)rdrd9

form>0,n>1.

I
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Coefficient formulae

The integrals in the denominators can be evaluated explicitly:

2w pa
/ 2. (Amnr) cos®>(mb) r dr df
o Jo

27
:/ cos? (mo) d@/ Amnt) £ dr
0

ma?J2(aon) if m=0,

J2+1(am,,) if m>1;

and likewise
27 ra
/ / J2(Amnr) sin?(mé) r dr d6 = J2 1 (Qmn),
o Jo
for m > 1.
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Coefficient formulae
Integral formulae for a,,, and b,,,

We conclude that

1 27
. S £(r.0) Jo(Aonr) r dr db,
ag 7Ta2./12(0[0n)/0 /0 (r,0) Jo(Aonr) rdr

2 27
Amn = 7T32Jm+1(04mn/ f(r,0) Jm(Amnr) cos(mb) rdr do,

2T
bmn:ﬂ'a2Jm+1(amn)/ / f(r,0) Jm(Amnr) sin(m@) r dr df,

for m, n € N. Finally, recall the initial velocity condition

0) = Z Z (cAmn@imn®@mn(r,0) + cAmnbnWmn(r,0)).

m=0 n=1
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Coefficient formulae

* %
Integral formulae for a’ = and b}

The same line of reasoning as above yields

1 /271‘/2
Q= ————5—— g(r,0) Jo(Aonr) rdrdo,
0 mcagnalt?(aon) Jo Jo (r,0) Jo(Xonr)

2 2T ra
* o= 0) Jm(Amn 0) rdrdo,
i = el o) /0 /0 £(7.8) Im(Amnr) cos(mé) r dr

2 21 ra
b = 0) Jn(Amn i 0) rdrdf,
Y. W (i /0 /0 £(7.8) Jm(Amar) sin(mé) r dr

for m,n e N.

This (essentially) completes the statement of the general solution
to the vibrating circular membrane problem
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Coefficient formulae

Remark

Since cos0 =1 and sin0 = 0 we have

Z Z Im(Amnr) (amn cos(mB) + by, sin(mf)) cos(cAmnt)
m=0 n=1

= Zao,,Jo (Monr) cos(cAont) + Z Z as above)

m=1 n=1

m=0
@ Note that there are really no by, coefficients.

@ This is the “true form” of the first series in the solution.

Analogous comments hold for the second series.
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Coefficient formulae
Remark

If f(r,0) = f(r) (i.e. f is radially symmetric), then for m # 0

27
amn = (- / / (r) Im(Amnr) cos(m@) r dr df

() /0 dr/o cos(mf) df =0,
o

0
and by, = 0, too. That is, there are only ag, terms.

Likewise, if g is radially symmetric, then for m = 0
a>,;nn = b;knn =0,
and there are only aj,, terms.
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Solve the vibrating membrane problem with a = ¢ = 1 and initial
conditions

f(r,0)=1—r*  g(r,0)=0.

Because g(r,0) = 0, we immediately find that a},, = b}, = 0 for
all m and n.

Because f is radially symmetric, we only need to compute ag,.
Since a=1, A\pyp = amp, SO

27
don = / / Jo Oéon rdrdH
7TJ O[()n

/ (1 — r*)do(agnr)r dr

a J12(a0,,) 0

substitute x=aq,r
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2 /'040n < X4 )
- 1— 2 Jo(x)x dx
a3, 2 (con) Jo og, ) 2

2 aon 1 Qon
= / xJo(x) dx — — x° Jo(x) dx
ag,Ji(aon) | Jo ®on JO
—_—
A B
According to earlier results
Qonp Q0n
A= / xJo(x) dx = xhi(x)| = aonti(@on),
0 0

Qop Q0n
B = / X% Jo(x) dx = x® J1(x) — 4x* Jo(x) + 8x3J3(x)
0 0

= agnjl(ao,,) — 40[8,7.]2(040”) + 8048,,J3(040,,).
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It follows that
2 (4 L) = Blomloon)  2foon)

ag YN ’
" a0nJ1 (cvon o3, ag,J7(aon)
so that finally
>~ 8 (aon2(on) — 243(on))
u(r,0,t) Jo(cgnr) cos(agnt).
nzzjl O‘OnJ2(O‘0n) o{ton’) (cont)

Remark: This solution can easily be implemented in Maple, since
the command
BesselJZeros (m,n)

will compute ap,, numerically.
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Examples

A non-symmetric example

Solve the vibrating membrane problem with a= c = 1 and initial
conditions

f(r,0) = r(1 —r*) cosf, g(r,0)=0.

Since g =0, a},, = b}, = 0 for all m,n. We also have
2 2 pl
bmn = 2/ / r(1 — r*) cos 8Jm(cmnr) sin(mé)r drdf
7rJm+1(04mn) o Jo

27 1
= ./22(04)/ cos fsin(m@) do / r(1 = r*) J(cmnr)r dr
m+1\"mn) J0O 0

s

-~

0
=0 forall mn.
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Additionally,
1 2w
aon = / / (1 — r*) cosOJo(conr)r drdd
7TJ (Ozon
1 2w
/ cosd d@/ r(1 — r*)Jo(conr)r dr
7TJ (ao,,) 0
0
=0,
and
2 2w
Amn = 2/ / r(1 — r*) cos OJm(amnr) cos(mb)r drdf
7'('Jm+1 Qmn 0
2 27 1
= 2/ cos 0 cos(mb) db / r(1 — rYYdm(amnr)r dr.
7TJm—Q—l(Oém") 0 0
A
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The integral A is zero unless m = 1, in which case it's equal to 7.
In this case

ain

1
2 )/0 r(1—r4)J1(a1,,r)rdr

N J22(0‘1n

2 ! 2 ! 6
= J ar)dr — J ar)dr).
J22(a1n) (/0 reJi(ainr) dr /0 r°Ji(ainr) r)

Substituting x = a1, and proceeding as before one can show

1
/ r?Ji(a1nr) dr = J2(aln),
0

Q1n

S(can)  4J3(a1n) n 8J4(v1n)

Q1n a1, a1p

1
/ r6J1(a1nr) dr =
0
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Assembling these formulae gives

2 <4J3(a1,,) B 8J4(a1,,)) _ 8 (aanS3(a1n) — 2Ja(0p))
) )

2 3 3 2
a1, ai, a3, J5(a1n)

Since all the other coefficients are zero,

u(r,0,t) = cosQZ 8 (a1nJs(a1n) — 2J4(a1n))J1(a1,,r) cos(avipt).

aanZ(aln)

Remark: In general, one should not expect the solution to reduce
to a single series.
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Examples
A “complicated” example

Solve the vibrating membrane problem with a=2, c =1 and
initial conditions

F(r0)=0, g(r,0) = r3(2— r) sin® (g) .

Since f =0, amy, =0, by, = 0. We also have

b = (--~)/02(---)dr/027rsin8 <§> sin(mf) do = 0,

odd, 2m-periodic

1 27 8 0 2 )
L S in® (Z) do 2 — PVo(Aonr)r dr |
ag, 7rao,,2J12(ao,,)/0 sin (2> /0 re( r)Jo(Xonr)rdr

357/64 (Maple) ?
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and

a 2 / e (¢ (m#) df
= Sin — | Cos\m
™ wamn2J2 1 (amn) Jo 2

0 if m>5 (Maple)

2
~/r2(2 — 1)Im(Amnr)rdr.
0

~~
2

The solution therefore can be written
4 o]
u(r,0,8) = > > ak,dm(Amar) cos(mb) sin(Amnt),

although the (?) integrals are not amenable to evaluation by hand.
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